Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|
2 |
|
cdlemk1.l |
|
3 |
|
cdlemk1.j |
|
4 |
|
cdlemk1.m |
|
5 |
|
cdlemk1.a |
|
6 |
|
cdlemk1.h |
|
7 |
|
cdlemk1.t |
|
8 |
|
cdlemk1.r |
|
9 |
|
cdlemk1.s |
|
10 |
|
cdlemk1.o |
|
11 |
|
cdlemk1.u |
|
12 |
|
simp11 |
|
13 |
|
simp21r |
|
14 |
|
simp22 |
|
15 |
2 3 5 6 7 8
|
trljat1 |
|
16 |
12 13 14 15
|
syl3anc |
|
17 |
10
|
fveq1i |
|
18 |
17
|
a1i |
|
19 |
|
simp13 |
|
20 |
6 7 8
|
trlcocnv |
|
21 |
12 13 19 20
|
syl3anc |
|
22 |
18 21
|
oveq12d |
|
23 |
16 22
|
oveq12d |
|
24 |
|
simp23 |
|
25 |
|
simp12 |
|
26 |
|
simp21l |
|
27 |
|
simp3r1 |
|
28 |
|
simp3r2 |
|
29 |
28
|
necomd |
|
30 |
27 29
|
jca |
|
31 |
|
simp3l1 |
|
32 |
|
simp3l3 |
|
33 |
|
simp3l2 |
|
34 |
31 32 33
|
3jca |
|
35 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuv2 |
|
36 |
12 24 13 25 19 26 30 34 14 35
|
syl333anc |
|
37 |
26 19
|
jca |
|
38 |
|
simp3r3 |
|
39 |
38 27
|
jca |
|
40 |
1 2 3 5 6 7 8 4 9
|
cdlemk12 |
|
41 |
12 25 13 37 14 24 34 39 28 40
|
syl333anc |
|
42 |
23 36 41
|
3eqtr4rd |
|