Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk1.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk1.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk1.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk1.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk1.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk1.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk1.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk1.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk1.o |
|- O = ( S ` D ) |
11 |
|
cdlemk1.u |
|- U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) ) |
12 |
|
cdlemk1.v |
|- V = ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' D ) ) .\/ ( R ` ( X o. `' D ) ) ) ) |
13 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> K e. HL ) |
14 |
13
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> K e. Lat ) |
15 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> W e. H ) |
16 |
13 15
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
17 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` F ) = ( R ` N ) ) |
18 |
|
simp212 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> G e. T ) |
19 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> F e. T ) |
20 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> D e. T ) |
21 |
|
simp211 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> N e. T ) |
22 |
|
simp331 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` F ) ) |
23 |
|
simp332 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` G ) =/= ( R ` D ) ) |
24 |
23
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` G ) ) |
25 |
22 24
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) ) |
26 |
|
simp311 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> F =/= ( _I |` B ) ) |
27 |
|
simp313 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> G =/= ( _I |` B ) ) |
28 |
|
simp312 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> D =/= ( _I |` B ) ) |
29 |
26 27 28
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) ) |
30 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
31 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuat |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( U ` G ) ` P ) e. A ) |
32 |
16 17 18 19 20 21 25 29 30 31
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) e. A ) |
33 |
1 5
|
atbase |
|- ( ( ( U ` G ) ` P ) e. A -> ( ( U ` G ) ` P ) e. B ) |
34 |
32 33
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) e. B ) |
35 |
|
simp213 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> X e. T ) |
36 |
|
simp333 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` X ) =/= ( R ` D ) ) |
37 |
36
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` X ) ) |
38 |
22 37
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` X ) ) ) |
39 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> X =/= ( _I |` B ) ) |
40 |
26 39 28
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) ) |
41 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuat |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ X e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` X ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( U ` X ) ` P ) e. A ) |
42 |
16 17 35 19 20 21 38 40 30 41
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` X ) ` P ) e. A ) |
43 |
1 5
|
atbase |
|- ( ( ( U ` X ) ` P ) e. A -> ( ( U ` X ) ` P ) e. B ) |
44 |
42 43
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` X ) ` P ) e. B ) |
45 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> P e. A ) |
46 |
1 2 3 5 6 7 8 4 12
|
cdlemkvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ G e. T /\ X e. T ) /\ P e. A ) -> V e. B ) |
47 |
13 15 20 18 35 45 46
|
syl231anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> V e. B ) |
48 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ ( ( U ` X ) ` P ) e. B /\ V e. B ) -> ( ( ( U ` X ) ` P ) .\/ V ) e. B ) |
49 |
14 44 47 48
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( ( U ` X ) ` P ) .\/ V ) e. B ) |
50 |
6 7
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> `' G e. T ) |
51 |
16 18 50
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> `' G e. T ) |
52 |
6 7
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. T /\ `' G e. T ) -> ( X o. `' G ) e. T ) |
53 |
16 35 51 52
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( X o. `' G ) e. T ) |
54 |
1 6 7 8
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X o. `' G ) e. T ) -> ( R ` ( X o. `' G ) ) e. B ) |
55 |
16 53 54
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( X o. `' G ) ) e. B ) |
56 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ ( ( U ` X ) ` P ) e. B /\ ( R ` ( X o. `' G ) ) e. B ) -> ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) e. B ) |
57 |
14 44 55 56
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) e. B ) |
58 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk7u |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) .<_ ( ( ( U ` X ) ` P ) .\/ V ) ) |
59 |
1 2 3 5 6 7 8 4 12
|
cdlemk10 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> V .<_ ( R ` ( X o. `' G ) ) ) |
60 |
13 15 20 18 35 30 59
|
syl231anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> V .<_ ( R ` ( X o. `' G ) ) ) |
61 |
1 2 3
|
latjlej2 |
|- ( ( K e. Lat /\ ( V e. B /\ ( R ` ( X o. `' G ) ) e. B /\ ( ( U ` X ) ` P ) e. B ) ) -> ( V .<_ ( R ` ( X o. `' G ) ) -> ( ( ( U ` X ) ` P ) .\/ V ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) ) |
62 |
14 47 55 44 61
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( V .<_ ( R ` ( X o. `' G ) ) -> ( ( ( U ` X ) ` P ) .\/ V ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) ) |
63 |
60 62
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( ( U ` X ) ` P ) .\/ V ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
64 |
1 2 14 34 49 57 58 63
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |