Metamath Proof Explorer


Theorem cdlemk11u

Description: Part of proof of Lemma K of Crawley p. 118. Line 17, p. 119, showing Eq. 3 (line 8, p. 119) for the sigma_1 ( U ) case. (Contributed by NM, 4-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b
|- B = ( Base ` K )
cdlemk1.l
|- .<_ = ( le ` K )
cdlemk1.j
|- .\/ = ( join ` K )
cdlemk1.m
|- ./\ = ( meet ` K )
cdlemk1.a
|- A = ( Atoms ` K )
cdlemk1.h
|- H = ( LHyp ` K )
cdlemk1.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk1.r
|- R = ( ( trL ` K ) ` W )
cdlemk1.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
cdlemk1.o
|- O = ( S ` D )
cdlemk1.u
|- U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) )
cdlemk1.v
|- V = ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' D ) ) .\/ ( R ` ( X o. `' D ) ) ) )
Assertion cdlemk11u
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk1.b
 |-  B = ( Base ` K )
2 cdlemk1.l
 |-  .<_ = ( le ` K )
3 cdlemk1.j
 |-  .\/ = ( join ` K )
4 cdlemk1.m
 |-  ./\ = ( meet ` K )
5 cdlemk1.a
 |-  A = ( Atoms ` K )
6 cdlemk1.h
 |-  H = ( LHyp ` K )
7 cdlemk1.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk1.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk1.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 cdlemk1.o
 |-  O = ( S ` D )
11 cdlemk1.u
 |-  U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) )
12 cdlemk1.v
 |-  V = ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' D ) ) .\/ ( R ` ( X o. `' D ) ) ) )
13 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> K e. HL )
14 13 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> K e. Lat )
15 simp11r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> W e. H )
16 13 15 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( K e. HL /\ W e. H ) )
17 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` F ) = ( R ` N ) )
18 simp212
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> G e. T )
19 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> F e. T )
20 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> D e. T )
21 simp211
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> N e. T )
22 simp331
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` F ) )
23 simp332
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` G ) =/= ( R ` D ) )
24 23 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` G ) )
25 22 24 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) )
26 simp311
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> F =/= ( _I |` B ) )
27 simp313
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> G =/= ( _I |` B ) )
28 simp312
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> D =/= ( _I |` B ) )
29 26 27 28 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) )
30 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
31 1 2 3 4 5 6 7 8 9 10 11 cdlemkuat
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( U ` G ) ` P ) e. A )
32 16 17 18 19 20 21 25 29 30 31 syl333anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) e. A )
33 1 5 atbase
 |-  ( ( ( U ` G ) ` P ) e. A -> ( ( U ` G ) ` P ) e. B )
34 32 33 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) e. B )
35 simp213
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> X e. T )
36 simp333
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` X ) =/= ( R ` D ) )
37 36 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` X ) )
38 22 37 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` X ) ) )
39 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> X =/= ( _I |` B ) )
40 26 39 28 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) )
41 1 2 3 4 5 6 7 8 9 10 11 cdlemkuat
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ X e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` X ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( U ` X ) ` P ) e. A )
42 16 17 35 19 20 21 38 40 30 41 syl333anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` X ) ` P ) e. A )
43 1 5 atbase
 |-  ( ( ( U ` X ) ` P ) e. A -> ( ( U ` X ) ` P ) e. B )
44 42 43 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` X ) ` P ) e. B )
45 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> P e. A )
46 1 2 3 5 6 7 8 4 12 cdlemkvcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ G e. T /\ X e. T ) /\ P e. A ) -> V e. B )
47 13 15 20 18 35 45 46 syl231anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> V e. B )
48 1 3 latjcl
 |-  ( ( K e. Lat /\ ( ( U ` X ) ` P ) e. B /\ V e. B ) -> ( ( ( U ` X ) ` P ) .\/ V ) e. B )
49 14 44 47 48 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( ( U ` X ) ` P ) .\/ V ) e. B )
50 6 7 ltrncnv
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> `' G e. T )
51 16 18 50 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> `' G e. T )
52 6 7 ltrnco
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. T /\ `' G e. T ) -> ( X o. `' G ) e. T )
53 16 35 51 52 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( X o. `' G ) e. T )
54 1 6 7 8 trlcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X o. `' G ) e. T ) -> ( R ` ( X o. `' G ) ) e. B )
55 16 53 54 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( X o. `' G ) ) e. B )
56 1 3 latjcl
 |-  ( ( K e. Lat /\ ( ( U ` X ) ` P ) e. B /\ ( R ` ( X o. `' G ) ) e. B ) -> ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) e. B )
57 14 44 55 56 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) e. B )
58 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk7u
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) .<_ ( ( ( U ` X ) ` P ) .\/ V ) )
59 1 2 3 5 6 7 8 4 12 cdlemk10
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> V .<_ ( R ` ( X o. `' G ) ) )
60 13 15 20 18 35 30 59 syl231anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> V .<_ ( R ` ( X o. `' G ) ) )
61 1 2 3 latjlej2
 |-  ( ( K e. Lat /\ ( V e. B /\ ( R ` ( X o. `' G ) ) e. B /\ ( ( U ` X ) ` P ) e. B ) ) -> ( V .<_ ( R ` ( X o. `' G ) ) -> ( ( ( U ` X ) ` P ) .\/ V ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) )
62 14 47 55 44 61 syl13anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( V .<_ ( R ` ( X o. `' G ) ) -> ( ( ( U ` X ) ` P ) .\/ V ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) )
63 60 62 mpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( ( U ` X ) ` P ) .\/ V ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) )
64 1 2 14 34 49 57 58 63 lattrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) )