Metamath Proof Explorer


Theorem cdlemk20

Description: Part of proof of Lemma K of Crawley p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be f_i. Our D , C , O , Q , U , V represent their f_1, f_2, k_1, k_2, sigma_1, sigma_2. (Contributed by NM, 5-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b
|- B = ( Base ` K )
cdlemk1.l
|- .<_ = ( le ` K )
cdlemk1.j
|- .\/ = ( join ` K )
cdlemk1.m
|- ./\ = ( meet ` K )
cdlemk1.a
|- A = ( Atoms ` K )
cdlemk1.h
|- H = ( LHyp ` K )
cdlemk1.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk1.r
|- R = ( ( trL ` K ) ` W )
cdlemk1.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
cdlemk1.o
|- O = ( S ` D )
cdlemk1.u
|- U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) )
cdlemk2a.q
|- Q = ( S ` C )
Assertion cdlemk20
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( U ` C ) ` P ) = ( Q ` P ) )

Proof

Step Hyp Ref Expression
1 cdlemk1.b
 |-  B = ( Base ` K )
2 cdlemk1.l
 |-  .<_ = ( le ` K )
3 cdlemk1.j
 |-  .\/ = ( join ` K )
4 cdlemk1.m
 |-  ./\ = ( meet ` K )
5 cdlemk1.a
 |-  A = ( Atoms ` K )
6 cdlemk1.h
 |-  H = ( LHyp ` K )
7 cdlemk1.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk1.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk1.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 cdlemk1.o
 |-  O = ( S ` D )
11 cdlemk1.u
 |-  U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) )
12 cdlemk2a.q
 |-  Q = ( S ` C )
13 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( K e. HL /\ W e. H ) )
14 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` F ) = ( R ` N ) )
15 simp21r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> C e. T )
16 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> F e. T )
17 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> D e. T )
18 simp21l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> N e. T )
19 simp3r1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` F ) )
20 simp3r3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` C ) =/= ( R ` D ) )
21 20 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` C ) )
22 19 21 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` C ) ) )
23 simp3l1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> F =/= ( _I |` B ) )
24 simp3l3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> C =/= ( _I |` B ) )
25 simp3l2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> D =/= ( _I |` B ) )
26 23 24 25 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) )
27 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
28 1 2 3 4 5 6 7 8 9 10 11 cdlemkuv2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ C e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` C ) ) /\ ( F =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( U ` C ) ` P ) = ( ( P .\/ ( R ` C ) ) ./\ ( ( O ` P ) .\/ ( R ` ( C o. `' D ) ) ) ) )
29 13 14 15 16 17 18 22 26 27 28 syl333anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( U ` C ) ` P ) = ( ( P .\/ ( R ` C ) ) ./\ ( ( O ` P ) .\/ ( R ` ( C o. `' D ) ) ) ) )
30 2 3 5 6 7 8 trljat1
 |-  ( ( ( K e. HL /\ W e. H ) /\ C e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` C ) ) = ( P .\/ ( C ` P ) ) )
31 13 15 27 30 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( P .\/ ( R ` C ) ) = ( P .\/ ( C ` P ) ) )
32 10 fveq1i
 |-  ( O ` P ) = ( ( S ` D ) ` P )
33 32 a1i
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( O ` P ) = ( ( S ` D ) ` P ) )
34 6 7 8 trlcocnv
 |-  ( ( ( K e. HL /\ W e. H ) /\ C e. T /\ D e. T ) -> ( R ` ( C o. `' D ) ) = ( R ` ( D o. `' C ) ) )
35 13 15 17 34 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` ( C o. `' D ) ) = ( R ` ( D o. `' C ) ) )
36 33 35 oveq12d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( O ` P ) .\/ ( R ` ( C o. `' D ) ) ) = ( ( ( S ` D ) ` P ) .\/ ( R ` ( D o. `' C ) ) ) )
37 31 36 oveq12d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( P .\/ ( R ` C ) ) ./\ ( ( O ` P ) .\/ ( R ` ( C o. `' D ) ) ) ) = ( ( P .\/ ( C ` P ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( D o. `' C ) ) ) ) )
38 12 fveq1i
 |-  ( Q ` P ) = ( ( S ` C ) ` P )
39 18 17 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( N e. T /\ D e. T ) )
40 simp3r2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` C ) =/= ( R ` F ) )
41 40 19 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) )
42 1 2 3 5 6 7 8 4 9 cdlemk12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ C e. T ) /\ ( ( N e. T /\ D e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` C ) =/= ( R ` D ) ) ) -> ( ( S ` C ) ` P ) = ( ( P .\/ ( C ` P ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( D o. `' C ) ) ) ) )
43 13 16 15 39 27 14 26 41 20 42 syl333anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( S ` C ) ` P ) = ( ( P .\/ ( C ` P ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( D o. `' C ) ) ) ) )
44 38 43 eqtr2id
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( P .\/ ( C ` P ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( D o. `' C ) ) ) ) = ( Q ` P ) )
45 29 37 44 3eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( U ` C ) ` P ) = ( Q ` P ) )