| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemk.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemk.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemk.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdlemk.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdlemk.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
cdlemk.r |
|- R = ( ( trL ` K ) ` W ) |
| 8 |
|
cdlemk.m |
|- ./\ = ( meet ` K ) |
| 9 |
|
cdlemk.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
| 10 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> K e. HL ) |
| 11 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> P e. A ) |
| 12 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> G e. T ) |
| 14 |
2 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) |
| 15 |
12 13 11 14
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( G ` P ) e. A ) |
| 16 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> F e. T ) |
| 17 |
|
simp21r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> X e. T ) |
| 18 |
12 16 17
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ X e. T ) ) |
| 19 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> N e. T ) |
| 20 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 21 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` F ) = ( R ` N ) ) |
| 22 |
19 20 21
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) |
| 23 |
|
simp311 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> F =/= ( _I |` B ) ) |
| 24 |
|
simp313 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> X =/= ( _I |` B ) ) |
| 25 |
|
simp32r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` X ) =/= ( R ` F ) ) |
| 26 |
1 2 3 4 5 6 7 8 9
|
cdlemksat |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ X e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` X ) ` P ) e. A ) |
| 27 |
18 22 23 24 25 26
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` X ) ` P ) e. A ) |
| 28 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) =/= ( R ` X ) ) |
| 29 |
28
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` X ) =/= ( R ` G ) ) |
| 30 |
4 5 6 7
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. T /\ G e. T ) /\ ( R ` X ) =/= ( R ` G ) ) -> ( R ` ( X o. `' G ) ) e. A ) |
| 31 |
12 17 13 29 30
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( X o. `' G ) ) e. A ) |
| 32 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) ) |
| 33 |
|
simp312 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> G =/= ( _I |` B ) ) |
| 34 |
|
simp32l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) =/= ( R ` F ) ) |
| 35 |
1 2 3 4 5 6 7 8 9
|
cdlemksat |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) e. A ) |
| 36 |
32 22 23 33 34 35
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) e. A ) |
| 37 |
1 2 3 4 5 6 7 8 9
|
cdlemksv2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) |
| 38 |
32 22 23 33 34 37
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) |
| 39 |
10
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> K e. Lat ) |
| 40 |
1 4 5 6 7
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ G =/= ( _I |` B ) ) -> ( R ` G ) e. A ) |
| 41 |
12 13 33 40
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) e. A ) |
| 42 |
1 3 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( R ` G ) e. A ) -> ( P .\/ ( R ` G ) ) e. B ) |
| 43 |
10 11 41 42
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( P .\/ ( R ` G ) ) e. B ) |
| 44 |
2 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ P e. A ) -> ( N ` P ) e. A ) |
| 45 |
12 19 11 44
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( N ` P ) e. A ) |
| 46 |
4 5 6 7
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ F e. T ) /\ ( R ` G ) =/= ( R ` F ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
| 47 |
12 13 16 34 46
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
| 48 |
1 3 4
|
hlatjcl |
|- ( ( K e. HL /\ ( N ` P ) e. A /\ ( R ` ( G o. `' F ) ) e. A ) -> ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) e. B ) |
| 49 |
10 45 47 48
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) e. B ) |
| 50 |
1 2 8
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ ( R ` G ) ) e. B /\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) e. B ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( P .\/ ( R ` G ) ) ) |
| 51 |
39 43 49 50
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( P .\/ ( R ` G ) ) ) |
| 52 |
38 51
|
eqbrtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) .<_ ( P .\/ ( R ` G ) ) ) |
| 53 |
2 3 4 5 6 7
|
trljat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) ) |
| 54 |
12 13 20 53
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) ) |
| 55 |
52 54
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) .<_ ( P .\/ ( G ` P ) ) ) |
| 56 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) |
| 57 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) ) |
| 58 |
|
eqid |
|- ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) = ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) |
| 59 |
1 2 3 4 5 6 7 8 9 58
|
cdlemk11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
| 60 |
32 56 57 34 25 59
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
| 61 |
2 3 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ ( R ` G ) e. A ) -> ( R ` G ) .<_ ( P .\/ ( R ` G ) ) ) |
| 62 |
10 11 41 61
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) .<_ ( P .\/ ( R ` G ) ) ) |
| 63 |
62 54
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) .<_ ( P .\/ ( G ` P ) ) ) |
| 64 |
1 2 3 4 5 6 7 8 9
|
cdlemksel |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ X e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( S ` X ) e. T ) |
| 65 |
18 22 23 24 25 64
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( S ` X ) e. T ) |
| 66 |
2 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S ` X ) e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( S ` X ) ` P ) e. A /\ -. ( ( S ` X ) ` P ) .<_ W ) ) |
| 67 |
12 65 20 66
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( ( S ` X ) ` P ) e. A /\ -. ( ( S ` X ) ` P ) .<_ W ) ) |
| 68 |
5 6
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> `' G e. T ) |
| 69 |
12 13 68
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> `' G e. T ) |
| 70 |
5 6 7
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` `' G ) = ( R ` G ) ) |
| 71 |
12 13 70
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` `' G ) = ( R ` G ) ) |
| 72 |
71 28
|
eqnetrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` `' G ) =/= ( R ` X ) ) |
| 73 |
1 5 6 7
|
trlcone |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' G e. T /\ X e. T ) /\ ( ( R ` `' G ) =/= ( R ` X ) /\ X =/= ( _I |` B ) ) ) -> ( R ` `' G ) =/= ( R ` ( `' G o. X ) ) ) |
| 74 |
12 69 17 72 24 73
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` `' G ) =/= ( R ` ( `' G o. X ) ) ) |
| 75 |
74
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( `' G o. X ) ) =/= ( R ` `' G ) ) |
| 76 |
5 6
|
ltrncom |
|- ( ( ( K e. HL /\ W e. H ) /\ `' G e. T /\ X e. T ) -> ( `' G o. X ) = ( X o. `' G ) ) |
| 77 |
12 69 17 76
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( `' G o. X ) = ( X o. `' G ) ) |
| 78 |
77
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( `' G o. X ) ) = ( R ` ( X o. `' G ) ) ) |
| 79 |
75 78 71
|
3netr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( X o. `' G ) ) =/= ( R ` G ) ) |
| 80 |
5 6
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. T /\ `' G e. T ) -> ( X o. `' G ) e. T ) |
| 81 |
12 17 69 80
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( X o. `' G ) e. T ) |
| 82 |
2 5 6 7
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X o. `' G ) e. T ) -> ( R ` ( X o. `' G ) ) .<_ W ) |
| 83 |
12 81 82
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( X o. `' G ) ) .<_ W ) |
| 84 |
2 5 6 7
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) .<_ W ) |
| 85 |
12 13 84
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) .<_ W ) |
| 86 |
2 3 4 5
|
lhp2atnle |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( ( S ` X ) ` P ) e. A /\ -. ( ( S ` X ) ` P ) .<_ W ) /\ ( R ` ( X o. `' G ) ) =/= ( R ` G ) ) /\ ( ( R ` ( X o. `' G ) ) e. A /\ ( R ` ( X o. `' G ) ) .<_ W ) /\ ( ( R ` G ) e. A /\ ( R ` G ) .<_ W ) ) -> -. ( R ` G ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
| 87 |
12 67 79 31 83 41 85 86
|
syl322anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> -. ( R ` G ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
| 88 |
|
nbrne1 |
|- ( ( ( R ` G ) .<_ ( P .\/ ( G ` P ) ) /\ -. ( R ` G ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) -> ( P .\/ ( G ` P ) ) =/= ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
| 89 |
63 87 88
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( P .\/ ( G ` P ) ) =/= ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
| 90 |
2 3 8 4
|
2atm |
|- ( ( ( K e. HL /\ P e. A /\ ( G ` P ) e. A ) /\ ( ( ( S ` X ) ` P ) e. A /\ ( R ` ( X o. `' G ) ) e. A /\ ( ( S ` G ) ` P ) e. A ) /\ ( ( ( S ` G ) ` P ) .<_ ( P .\/ ( G ` P ) ) /\ ( ( S ` G ) ` P ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) /\ ( P .\/ ( G ` P ) ) =/= ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) ) |
| 91 |
10 11 15 27 31 36 55 60 89 90
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) ) |