Metamath Proof Explorer


Theorem cdlemk12

Description: Part of proof of Lemma K of Crawley p. 118. Eq. 4, line 10, p. 119. (Contributed by NM, 30-Jun-2013)

Ref Expression
Hypotheses cdlemk.b
|- B = ( Base ` K )
cdlemk.l
|- .<_ = ( le ` K )
cdlemk.j
|- .\/ = ( join ` K )
cdlemk.a
|- A = ( Atoms ` K )
cdlemk.h
|- H = ( LHyp ` K )
cdlemk.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk.r
|- R = ( ( trL ` K ) ` W )
cdlemk.m
|- ./\ = ( meet ` K )
cdlemk.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
Assertion cdlemk12
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk.b
 |-  B = ( Base ` K )
2 cdlemk.l
 |-  .<_ = ( le ` K )
3 cdlemk.j
 |-  .\/ = ( join ` K )
4 cdlemk.a
 |-  A = ( Atoms ` K )
5 cdlemk.h
 |-  H = ( LHyp ` K )
6 cdlemk.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemk.r
 |-  R = ( ( trL ` K ) ` W )
8 cdlemk.m
 |-  ./\ = ( meet ` K )
9 cdlemk.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> K e. HL )
11 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> P e. A )
12 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( K e. HL /\ W e. H ) )
13 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> G e. T )
14 2 4 5 6 ltrnat
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A )
15 12 13 11 14 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( G ` P ) e. A )
16 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> F e. T )
17 simp21r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> X e. T )
18 12 16 17 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ X e. T ) )
19 simp21l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> N e. T )
20 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( P e. A /\ -. P .<_ W ) )
21 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` F ) = ( R ` N ) )
22 19 20 21 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) )
23 simp311
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> F =/= ( _I |` B ) )
24 simp313
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> X =/= ( _I |` B ) )
25 simp32r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` X ) =/= ( R ` F ) )
26 1 2 3 4 5 6 7 8 9 cdlemksat
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ X e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` X ) ` P ) e. A )
27 18 22 23 24 25 26 syl113anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` X ) ` P ) e. A )
28 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) =/= ( R ` X ) )
29 28 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` X ) =/= ( R ` G ) )
30 4 5 6 7 trlcocnvat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. T /\ G e. T ) /\ ( R ` X ) =/= ( R ` G ) ) -> ( R ` ( X o. `' G ) ) e. A )
31 12 17 13 29 30 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( X o. `' G ) ) e. A )
32 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) )
33 simp312
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> G =/= ( _I |` B ) )
34 simp32l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) =/= ( R ` F ) )
35 1 2 3 4 5 6 7 8 9 cdlemksat
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) e. A )
36 32 22 23 33 34 35 syl113anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) e. A )
37 1 2 3 4 5 6 7 8 9 cdlemksv2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) )
38 32 22 23 33 34 37 syl113anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) )
39 10 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> K e. Lat )
40 1 4 5 6 7 trlnidat
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ G =/= ( _I |` B ) ) -> ( R ` G ) e. A )
41 12 13 33 40 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) e. A )
42 1 3 4 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ ( R ` G ) e. A ) -> ( P .\/ ( R ` G ) ) e. B )
43 10 11 41 42 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( P .\/ ( R ` G ) ) e. B )
44 2 4 5 6 ltrnat
 |-  ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ P e. A ) -> ( N ` P ) e. A )
45 12 19 11 44 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( N ` P ) e. A )
46 4 5 6 7 trlcocnvat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ F e. T ) /\ ( R ` G ) =/= ( R ` F ) ) -> ( R ` ( G o. `' F ) ) e. A )
47 12 13 16 34 46 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( G o. `' F ) ) e. A )
48 1 3 4 hlatjcl
 |-  ( ( K e. HL /\ ( N ` P ) e. A /\ ( R ` ( G o. `' F ) ) e. A ) -> ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) e. B )
49 10 45 47 48 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) e. B )
50 1 2 8 latmle1
 |-  ( ( K e. Lat /\ ( P .\/ ( R ` G ) ) e. B /\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) e. B ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( P .\/ ( R ` G ) ) )
51 39 43 49 50 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( P .\/ ( R ` G ) ) )
52 38 51 eqbrtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) .<_ ( P .\/ ( R ` G ) ) )
53 2 3 4 5 6 7 trljat1
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) )
54 12 13 20 53 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) )
55 52 54 breqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) .<_ ( P .\/ ( G ` P ) ) )
56 simp2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) )
57 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) )
58 eqid
 |-  ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) = ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) )
59 1 2 3 4 5 6 7 8 9 58 cdlemk11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) )
60 32 56 57 34 25 59 syl113anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) )
61 2 3 4 hlatlej2
 |-  ( ( K e. HL /\ P e. A /\ ( R ` G ) e. A ) -> ( R ` G ) .<_ ( P .\/ ( R ` G ) ) )
62 10 11 41 61 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) .<_ ( P .\/ ( R ` G ) ) )
63 62 54 breqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) .<_ ( P .\/ ( G ` P ) ) )
64 1 2 3 4 5 6 7 8 9 cdlemksel
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ X e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( S ` X ) e. T )
65 18 22 23 24 25 64 syl113anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( S ` X ) e. T )
66 2 4 5 6 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S ` X ) e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( S ` X ) ` P ) e. A /\ -. ( ( S ` X ) ` P ) .<_ W ) )
67 12 65 20 66 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( ( S ` X ) ` P ) e. A /\ -. ( ( S ` X ) ` P ) .<_ W ) )
68 5 6 ltrncnv
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> `' G e. T )
69 12 13 68 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> `' G e. T )
70 5 6 7 trlcnv
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` `' G ) = ( R ` G ) )
71 12 13 70 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` `' G ) = ( R ` G ) )
72 71 28 eqnetrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` `' G ) =/= ( R ` X ) )
73 1 5 6 7 trlcone
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( `' G e. T /\ X e. T ) /\ ( ( R ` `' G ) =/= ( R ` X ) /\ X =/= ( _I |` B ) ) ) -> ( R ` `' G ) =/= ( R ` ( `' G o. X ) ) )
74 12 69 17 72 24 73 syl122anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` `' G ) =/= ( R ` ( `' G o. X ) ) )
75 74 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( `' G o. X ) ) =/= ( R ` `' G ) )
76 5 6 ltrncom
 |-  ( ( ( K e. HL /\ W e. H ) /\ `' G e. T /\ X e. T ) -> ( `' G o. X ) = ( X o. `' G ) )
77 12 69 17 76 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( `' G o. X ) = ( X o. `' G ) )
78 77 fveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( `' G o. X ) ) = ( R ` ( X o. `' G ) ) )
79 75 78 71 3netr3d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( X o. `' G ) ) =/= ( R ` G ) )
80 5 6 ltrnco
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. T /\ `' G e. T ) -> ( X o. `' G ) e. T )
81 12 17 69 80 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( X o. `' G ) e. T )
82 2 5 6 7 trlle
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X o. `' G ) e. T ) -> ( R ` ( X o. `' G ) ) .<_ W )
83 12 81 82 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` ( X o. `' G ) ) .<_ W )
84 2 5 6 7 trlle
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) .<_ W )
85 12 13 84 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( R ` G ) .<_ W )
86 2 3 4 5 lhp2atnle
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( ( S ` X ) ` P ) e. A /\ -. ( ( S ` X ) ` P ) .<_ W ) /\ ( R ` ( X o. `' G ) ) =/= ( R ` G ) ) /\ ( ( R ` ( X o. `' G ) ) e. A /\ ( R ` ( X o. `' G ) ) .<_ W ) /\ ( ( R ` G ) e. A /\ ( R ` G ) .<_ W ) ) -> -. ( R ` G ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) )
87 12 67 79 31 83 41 85 86 syl322anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> -. ( R ` G ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) )
88 nbrne1
 |-  ( ( ( R ` G ) .<_ ( P .\/ ( G ` P ) ) /\ -. ( R ` G ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) -> ( P .\/ ( G ` P ) ) =/= ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) )
89 63 87 88 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( P .\/ ( G ` P ) ) =/= ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) )
90 2 3 8 4 2atm
 |-  ( ( ( K e. HL /\ P e. A /\ ( G ` P ) e. A ) /\ ( ( ( S ` X ) ` P ) e. A /\ ( R ` ( X o. `' G ) ) e. A /\ ( ( S ` G ) ` P ) e. A ) /\ ( ( ( S ` G ) ` P ) .<_ ( P .\/ ( G ` P ) ) /\ ( ( S ` G ) ` P ) .<_ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) /\ ( P .\/ ( G ` P ) ) =/= ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) )
91 10 11 15 27 31 36 55 60 89 90 syl333anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` X ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( S ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) )