Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk3.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk3.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk3.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk3.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk3.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk3.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk3.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk3.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk3.u1 |
|- Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( b Y G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( S ` b ) ` P ) .\/ ( R ` ( G o. `' b ) ) ) ) ) |
12 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) ) |
13 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( F e. T /\ b e. T /\ N e. T ) ) |
14 |
|
simp31l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` b ) =/= ( R ` F ) ) |
15 |
|
simp321 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F =/= ( _I |` B ) ) |
16 |
|
simp322 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> b =/= ( _I |` B ) ) |
17 |
15 16
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) ) |
18 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
19 |
1 2 3 4 5 6 7 8 9
|
cdlemk30 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( S ` b ) ` P ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) ) |
20 |
12 13 14 17 18 19
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( S ` b ) ` P ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) ) |
21 |
20
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( S ` b ) ` P ) .\/ ( R ` ( G o. `' b ) ) ) = ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) |
22 |
21
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( ( S ` b ) ` P ) .\/ ( R ` ( G o. `' b ) ) ) ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) ) |
23 |
11 22
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ b e. T /\ N e. T ) /\ G e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( b Y G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) ) |