Metamath Proof Explorer


Theorem ceqsrexv2

Description: Alternate elimitation of a restricted existential quantifier, using implicit substitution. (Contributed by Scott Fenton, 5-Sep-2017)

Ref Expression
Hypothesis ceqsrexv2.1
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsrexv2
|- ( E. x e. B ( x = A /\ ph ) <-> ( A e. B /\ ps ) )

Proof

Step Hyp Ref Expression
1 ceqsrexv2.1
 |-  ( x = A -> ( ph <-> ps ) )
2 1 ceqsrexbv
 |-  ( E. x e. B ( x = A /\ ph ) <-> ( A e. B /\ ps ) )