Step |
Hyp |
Ref |
Expression |
1 |
|
iota5f.1 |
|- F/ x ph |
2 |
|
iota5f.2 |
|- F/_ x A |
3 |
|
iota5f.3 |
|- ( ( ph /\ A e. V ) -> ( ps <-> x = A ) ) |
4 |
2
|
nfel1 |
|- F/ x A e. V |
5 |
1 4
|
nfan |
|- F/ x ( ph /\ A e. V ) |
6 |
5 3
|
alrimi |
|- ( ( ph /\ A e. V ) -> A. x ( ps <-> x = A ) ) |
7 |
2
|
nfeq2 |
|- F/ x y = A |
8 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
9 |
8
|
bibi2d |
|- ( y = A -> ( ( ps <-> x = y ) <-> ( ps <-> x = A ) ) ) |
10 |
7 9
|
albid |
|- ( y = A -> ( A. x ( ps <-> x = y ) <-> A. x ( ps <-> x = A ) ) ) |
11 |
|
eqeq2 |
|- ( y = A -> ( ( iota x ps ) = y <-> ( iota x ps ) = A ) ) |
12 |
10 11
|
imbi12d |
|- ( y = A -> ( ( A. x ( ps <-> x = y ) -> ( iota x ps ) = y ) <-> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) ) |
13 |
|
iotaval |
|- ( A. x ( ps <-> x = y ) -> ( iota x ps ) = y ) |
14 |
12 13
|
vtoclg |
|- ( A e. V -> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ A e. V ) -> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) |
16 |
6 15
|
mpd |
|- ( ( ph /\ A e. V ) -> ( iota x ps ) = A ) |