Metamath Proof Explorer


Theorem iota5f

Description: A method for computing iota. (Contributed by Scott Fenton, 13-Dec-2017)

Ref Expression
Hypotheses iota5f.1
|- F/ x ph
iota5f.2
|- F/_ x A
iota5f.3
|- ( ( ph /\ A e. V ) -> ( ps <-> x = A ) )
Assertion iota5f
|- ( ( ph /\ A e. V ) -> ( iota x ps ) = A )

Proof

Step Hyp Ref Expression
1 iota5f.1
 |-  F/ x ph
2 iota5f.2
 |-  F/_ x A
3 iota5f.3
 |-  ( ( ph /\ A e. V ) -> ( ps <-> x = A ) )
4 2 nfel1
 |-  F/ x A e. V
5 1 4 nfan
 |-  F/ x ( ph /\ A e. V )
6 5 3 alrimi
 |-  ( ( ph /\ A e. V ) -> A. x ( ps <-> x = A ) )
7 2 nfeq2
 |-  F/ x y = A
8 eqeq2
 |-  ( y = A -> ( x = y <-> x = A ) )
9 8 bibi2d
 |-  ( y = A -> ( ( ps <-> x = y ) <-> ( ps <-> x = A ) ) )
10 7 9 albid
 |-  ( y = A -> ( A. x ( ps <-> x = y ) <-> A. x ( ps <-> x = A ) ) )
11 eqeq2
 |-  ( y = A -> ( ( iota x ps ) = y <-> ( iota x ps ) = A ) )
12 10 11 imbi12d
 |-  ( y = A -> ( ( A. x ( ps <-> x = y ) -> ( iota x ps ) = y ) <-> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) )
13 iotaval
 |-  ( A. x ( ps <-> x = y ) -> ( iota x ps ) = y )
14 12 13 vtoclg
 |-  ( A e. V -> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) )
15 14 adantl
 |-  ( ( ph /\ A e. V ) -> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) )
16 6 15 mpd
 |-  ( ( ph /\ A e. V ) -> ( iota x ps ) = A )