Metamath Proof Explorer


Theorem iota5f

Description: A method for computing iota. (Contributed by Scott Fenton, 13-Dec-2017)

Ref Expression
Hypotheses iota5f.1 x φ
iota5f.2 _ x A
iota5f.3 φ A V ψ x = A
Assertion iota5f φ A V ι x | ψ = A

Proof

Step Hyp Ref Expression
1 iota5f.1 x φ
2 iota5f.2 _ x A
3 iota5f.3 φ A V ψ x = A
4 2 nfel1 x A V
5 1 4 nfan x φ A V
6 5 3 alrimi φ A V x ψ x = A
7 2 nfeq2 x y = A
8 eqeq2 y = A x = y x = A
9 8 bibi2d y = A ψ x = y ψ x = A
10 7 9 albid y = A x ψ x = y x ψ x = A
11 eqeq2 y = A ι x | ψ = y ι x | ψ = A
12 10 11 imbi12d y = A x ψ x = y ι x | ψ = y x ψ x = A ι x | ψ = A
13 iotaval x ψ x = y ι x | ψ = y
14 12 13 vtoclg A V x ψ x = A ι x | ψ = A
15 14 adantl φ A V x ψ x = A ι x | ψ = A
16 6 15 mpd φ A V ι x | ψ = A