Metamath Proof Explorer


Theorem ceqsrexv2

Description: Alternate elimitation of a restricted existential quantifier, using implicit substitution. (Contributed by Scott Fenton, 5-Sep-2017)

Ref Expression
Hypothesis ceqsrexv2.1 x = A φ ψ
Assertion ceqsrexv2 x B x = A φ A B ψ

Proof

Step Hyp Ref Expression
1 ceqsrexv2.1 x = A φ ψ
2 1 ceqsrexbv x B x = A φ A B ψ