Metamath Proof Explorer
Description: Alternate elimitation of a restricted existential quantifier, using
implicit substitution. (Contributed by Scott Fenton, 5-Sep-2017)
|
|
Ref |
Expression |
|
Hypothesis |
ceqsrexv2.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
ceqsrexv2 |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsrexv2.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
1
|
ceqsrexbv |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |