Metamath Proof Explorer


Theorem ceqsrexv2

Description: Alternate elimitation of a restricted existential quantifier, using implicit substitution. (Contributed by Scott Fenton, 5-Sep-2017)

Ref Expression
Hypothesis ceqsrexv2.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsrexv2 ( ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝐴𝐵𝜓 ) )

Proof

Step Hyp Ref Expression
1 ceqsrexv2.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 ceqsrexbv ( ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝐴𝐵𝜓 ) )