Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( N e. NN -> N e. NN ) |
2 |
|
3simpc |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
3 |
|
3simpc |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) -> ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) |
4 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. E , F >. <-> <. C , B >. Cgr <. F , E >. ) ) |
5 |
1 2 3 4
|
syl3an |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. E , F >. <-> <. C , B >. Cgr <. F , E >. ) ) |
6 |
5
|
3anbi3d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. C , B >. Cgr <. F , E >. ) ) ) |
7 |
|
3ancoma |
|- ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. C , B >. Cgr <. F , E >. ) <-> ( <. A , C >. Cgr <. D , F >. /\ <. A , B >. Cgr <. D , E >. /\ <. C , B >. Cgr <. F , E >. ) ) |
8 |
6 7
|
bitrdi |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) <-> ( <. A , C >. Cgr <. D , F >. /\ <. A , B >. Cgr <. D , E >. /\ <. C , B >. Cgr <. F , E >. ) ) ) |
9 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) |
10 |
|
biid |
|- ( N e. NN <-> N e. NN ) |
11 |
|
3ancomb |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
12 |
|
3ancomb |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) <-> ( D e. ( EE ` N ) /\ F e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) |
13 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , <. C , B >. >. Cgr3 <. D , <. F , E >. >. <-> ( <. A , C >. Cgr <. D , F >. /\ <. A , B >. Cgr <. D , E >. /\ <. C , B >. Cgr <. F , E >. ) ) ) |
14 |
10 11 12 13
|
syl3anb |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. C , B >. >. Cgr3 <. D , <. F , E >. >. <-> ( <. A , C >. Cgr <. D , F >. /\ <. A , B >. Cgr <. D , E >. /\ <. C , B >. Cgr <. F , E >. ) ) ) |
15 |
8 9 14
|
3bitr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> <. A , <. C , B >. >. Cgr3 <. D , <. F , E >. >. ) ) |