Step |
Hyp |
Ref |
Expression |
1 |
|
opeq1 |
|- ( a = A -> <. a , b >. = <. A , b >. ) |
2 |
1
|
breq1d |
|- ( a = A -> ( <. a , b >. Cgr <. d , e >. <-> <. A , b >. Cgr <. d , e >. ) ) |
3 |
|
opeq1 |
|- ( a = A -> <. a , c >. = <. A , c >. ) |
4 |
3
|
breq1d |
|- ( a = A -> ( <. a , c >. Cgr <. d , f >. <-> <. A , c >. Cgr <. d , f >. ) ) |
5 |
2 4
|
3anbi12d |
|- ( a = A -> ( ( <. a , b >. Cgr <. d , e >. /\ <. a , c >. Cgr <. d , f >. /\ <. b , c >. Cgr <. e , f >. ) <-> ( <. A , b >. Cgr <. d , e >. /\ <. A , c >. Cgr <. d , f >. /\ <. b , c >. Cgr <. e , f >. ) ) ) |
6 |
|
opeq2 |
|- ( b = B -> <. A , b >. = <. A , B >. ) |
7 |
6
|
breq1d |
|- ( b = B -> ( <. A , b >. Cgr <. d , e >. <-> <. A , B >. Cgr <. d , e >. ) ) |
8 |
|
opeq1 |
|- ( b = B -> <. b , c >. = <. B , c >. ) |
9 |
8
|
breq1d |
|- ( b = B -> ( <. b , c >. Cgr <. e , f >. <-> <. B , c >. Cgr <. e , f >. ) ) |
10 |
7 9
|
3anbi13d |
|- ( b = B -> ( ( <. A , b >. Cgr <. d , e >. /\ <. A , c >. Cgr <. d , f >. /\ <. b , c >. Cgr <. e , f >. ) <-> ( <. A , B >. Cgr <. d , e >. /\ <. A , c >. Cgr <. d , f >. /\ <. B , c >. Cgr <. e , f >. ) ) ) |
11 |
|
opeq2 |
|- ( c = C -> <. A , c >. = <. A , C >. ) |
12 |
11
|
breq1d |
|- ( c = C -> ( <. A , c >. Cgr <. d , f >. <-> <. A , C >. Cgr <. d , f >. ) ) |
13 |
|
opeq2 |
|- ( c = C -> <. B , c >. = <. B , C >. ) |
14 |
13
|
breq1d |
|- ( c = C -> ( <. B , c >. Cgr <. e , f >. <-> <. B , C >. Cgr <. e , f >. ) ) |
15 |
12 14
|
3anbi23d |
|- ( c = C -> ( ( <. A , B >. Cgr <. d , e >. /\ <. A , c >. Cgr <. d , f >. /\ <. B , c >. Cgr <. e , f >. ) <-> ( <. A , B >. Cgr <. d , e >. /\ <. A , C >. Cgr <. d , f >. /\ <. B , C >. Cgr <. e , f >. ) ) ) |
16 |
|
opeq1 |
|- ( d = D -> <. d , e >. = <. D , e >. ) |
17 |
16
|
breq2d |
|- ( d = D -> ( <. A , B >. Cgr <. d , e >. <-> <. A , B >. Cgr <. D , e >. ) ) |
18 |
|
opeq1 |
|- ( d = D -> <. d , f >. = <. D , f >. ) |
19 |
18
|
breq2d |
|- ( d = D -> ( <. A , C >. Cgr <. d , f >. <-> <. A , C >. Cgr <. D , f >. ) ) |
20 |
17 19
|
3anbi12d |
|- ( d = D -> ( ( <. A , B >. Cgr <. d , e >. /\ <. A , C >. Cgr <. d , f >. /\ <. B , C >. Cgr <. e , f >. ) <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. e , f >. ) ) ) |
21 |
|
opeq2 |
|- ( e = E -> <. D , e >. = <. D , E >. ) |
22 |
21
|
breq2d |
|- ( e = E -> ( <. A , B >. Cgr <. D , e >. <-> <. A , B >. Cgr <. D , E >. ) ) |
23 |
|
opeq1 |
|- ( e = E -> <. e , f >. = <. E , f >. ) |
24 |
23
|
breq2d |
|- ( e = E -> ( <. B , C >. Cgr <. e , f >. <-> <. B , C >. Cgr <. E , f >. ) ) |
25 |
22 24
|
3anbi13d |
|- ( e = E -> ( ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. e , f >. ) <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) |
26 |
|
opeq2 |
|- ( f = F -> <. D , f >. = <. D , F >. ) |
27 |
26
|
breq2d |
|- ( f = F -> ( <. A , C >. Cgr <. D , f >. <-> <. A , C >. Cgr <. D , F >. ) ) |
28 |
|
opeq2 |
|- ( f = F -> <. E , f >. = <. E , F >. ) |
29 |
28
|
breq2d |
|- ( f = F -> ( <. B , C >. Cgr <. E , f >. <-> <. B , C >. Cgr <. E , F >. ) ) |
30 |
27 29
|
3anbi23d |
|- ( f = F -> ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) |
31 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
32 |
|
df-cgr3 |
|- Cgr3 = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) E. e e. ( EE ` n ) E. f e. ( EE ` n ) ( p = <. a , <. b , c >. >. /\ q = <. d , <. e , f >. >. /\ ( <. a , b >. Cgr <. d , e >. /\ <. a , c >. Cgr <. d , f >. /\ <. b , c >. Cgr <. e , f >. ) ) } |
33 |
5 10 15 20 25 30 31 32
|
br6 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) |