Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( N e. NN -> N e. NN ) |
2 |
|
3simpa |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
3 |
|
3simpa |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) |
4 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. B , A >. Cgr <. E , D >. ) ) |
5 |
1 2 3 4
|
syl3an |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. B , A >. Cgr <. E , D >. ) ) |
6 |
|
3simpb |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
7 |
|
3simpb |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) |
8 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. C , A >. Cgr <. F , D >. ) ) |
9 |
1 6 7 8
|
syl3an |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. C , A >. Cgr <. F , D >. ) ) |
10 |
5 9
|
3anbi12d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) <-> ( <. B , A >. Cgr <. E , D >. /\ <. C , A >. Cgr <. F , D >. /\ <. B , C >. Cgr <. E , F >. ) ) ) |
11 |
|
3anrot |
|- ( ( <. B , C >. Cgr <. E , F >. /\ <. B , A >. Cgr <. E , D >. /\ <. C , A >. Cgr <. F , D >. ) <-> ( <. B , A >. Cgr <. E , D >. /\ <. C , A >. Cgr <. F , D >. /\ <. B , C >. Cgr <. E , F >. ) ) |
12 |
10 11
|
bitr4di |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) <-> ( <. B , C >. Cgr <. E , F >. /\ <. B , A >. Cgr <. E , D >. /\ <. C , A >. Cgr <. F , D >. ) ) ) |
13 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) |
14 |
|
biid |
|- ( N e. NN <-> N e. NN ) |
15 |
|
3anrot |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
16 |
|
3anrot |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) <-> ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) |
17 |
|
brcgr3 |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. <-> ( <. B , C >. Cgr <. E , F >. /\ <. B , A >. Cgr <. E , D >. /\ <. C , A >. Cgr <. F , D >. ) ) ) |
18 |
14 15 16 17
|
syl3anb |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. <-> ( <. B , C >. Cgr <. E , F >. /\ <. B , A >. Cgr <. E , D >. /\ <. C , A >. Cgr <. F , D >. ) ) ) |
19 |
12 13 18
|
3bitr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. ) ) |