Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
2 |
|
3simpa |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
3 |
|
3simpa |
⊢ ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
4 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ↔ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ) ) |
5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ↔ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ) ) |
6 |
|
3simpb |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
7 |
|
3simpb |
⊢ ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
8 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ↔ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) |
9 |
1 6 7 8
|
syl3an |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ↔ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) |
10 |
5 9
|
3anbi12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ↔ ( 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) ) |
11 |
|
3anrot |
⊢ ( ( 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ↔ ( 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) |
12 |
10 11
|
bitr4di |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ↔ ( 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) ) |
13 |
|
brcgr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ↔ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) ) |
14 |
|
biid |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ ) |
15 |
|
3anrot |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
16 |
|
3anrot |
⊢ ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
17 |
|
brcgr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐵 , 〈 𝐶 , 𝐴 〉 〉 Cgr3 〈 𝐸 , 〈 𝐹 , 𝐷 〉 〉 ↔ ( 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) ) |
18 |
14 15 16 17
|
syl3anb |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐵 , 〈 𝐶 , 𝐴 〉 〉 Cgr3 〈 𝐸 , 〈 𝐹 , 𝐷 〉 〉 ↔ ( 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) ) |
19 |
12 13 18
|
3bitr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ↔ 〈 𝐵 , 〈 𝐶 , 𝐴 〉 〉 Cgr3 〈 𝐸 , 〈 𝐹 , 𝐷 〉 〉 ) ) |