| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
| 2 |
|
3simpa |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 3 |
|
3simpa |
⊢ ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 4 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ↔ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ) ) |
| 5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ↔ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ) ) |
| 6 |
|
3simpb |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 7 |
|
3simpb |
⊢ ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 8 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ↔ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) |
| 9 |
1 6 7 8
|
syl3an |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ↔ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) |
| 10 |
5 9
|
3anbi12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ↔ ( 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) ) |
| 11 |
|
3anrot |
⊢ ( ( 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ↔ ( 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) |
| 12 |
10 11
|
bitr4di |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ↔ ( 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) ) |
| 13 |
|
brcgr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ↔ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) ) |
| 14 |
|
biid |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ ) |
| 15 |
|
3anrot |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 16 |
|
3anrot |
⊢ ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 17 |
|
brcgr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐵 , 〈 𝐶 , 𝐴 〉 〉 Cgr3 〈 𝐸 , 〈 𝐹 , 𝐷 〉 〉 ↔ ( 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) ) |
| 18 |
14 15 16 17
|
syl3anb |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐵 , 〈 𝐶 , 𝐴 〉 〉 Cgr3 〈 𝐸 , 〈 𝐹 , 𝐷 〉 〉 ↔ ( 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝐶 , 𝐴 〉 Cgr 〈 𝐹 , 𝐷 〉 ) ) ) |
| 19 |
12 13 18
|
3bitr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ↔ 〈 𝐵 , 〈 𝐶 , 𝐴 〉 〉 Cgr3 〈 𝐸 , 〈 𝐹 , 𝐷 〉 〉 ) ) |