Metamath Proof Explorer


Theorem brcgr3

Description: Binary relation form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013)

Ref Expression
Assertion brcgr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFABCgrDEACCgrDFBCCgrEF

Proof

Step Hyp Ref Expression
1 opeq1 a=Aab=Ab
2 1 breq1d a=AabCgrdeAbCgrde
3 opeq1 a=Aac=Ac
4 3 breq1d a=AacCgrdfAcCgrdf
5 2 4 3anbi12d a=AabCgrdeacCgrdfbcCgrefAbCgrdeAcCgrdfbcCgref
6 opeq2 b=BAb=AB
7 6 breq1d b=BAbCgrdeABCgrde
8 opeq1 b=Bbc=Bc
9 8 breq1d b=BbcCgrefBcCgref
10 7 9 3anbi13d b=BAbCgrdeAcCgrdfbcCgrefABCgrdeAcCgrdfBcCgref
11 opeq2 c=CAc=AC
12 11 breq1d c=CAcCgrdfACCgrdf
13 opeq2 c=CBc=BC
14 13 breq1d c=CBcCgrefBCCgref
15 12 14 3anbi23d c=CABCgrdeAcCgrdfBcCgrefABCgrdeACCgrdfBCCgref
16 opeq1 d=Dde=De
17 16 breq2d d=DABCgrdeABCgrDe
18 opeq1 d=Ddf=Df
19 18 breq2d d=DACCgrdfACCgrDf
20 17 19 3anbi12d d=DABCgrdeACCgrdfBCCgrefABCgrDeACCgrDfBCCgref
21 opeq2 e=EDe=DE
22 21 breq2d e=EABCgrDeABCgrDE
23 opeq1 e=Eef=Ef
24 23 breq2d e=EBCCgrefBCCgrEf
25 22 24 3anbi13d e=EABCgrDeACCgrDfBCCgrefABCgrDEACCgrDfBCCgrEf
26 opeq2 f=FDf=DF
27 26 breq2d f=FACCgrDfACCgrDF
28 opeq2 f=FEf=EF
29 28 breq2d f=FBCCgrEfBCCgrEF
30 27 29 3anbi23d f=FABCgrDEACCgrDfBCCgrEfABCgrDEACCgrDFBCCgrEF
31 fveq2 n=N𝔼n=𝔼N
32 df-cgr3 Cgr3=pq|na𝔼nb𝔼nc𝔼nd𝔼ne𝔼nf𝔼np=abcq=defabCgrdeacCgrdfbcCgref
33 5 10 15 20 25 30 31 32 br6 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFABCgrDEACCgrDFBCCgrEF