Metamath Proof Explorer


Theorem cgr3permute1

Description: Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion cgr3permute1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFACBCgr3DFE

Proof

Step Hyp Ref Expression
1 id NN
2 3simpc A𝔼NB𝔼NC𝔼NB𝔼NC𝔼N
3 3simpc D𝔼NE𝔼NF𝔼NE𝔼NF𝔼N
4 cgrcomlr NB𝔼NC𝔼NE𝔼NF𝔼NBCCgrEFCBCgrFE
5 1 2 3 4 syl3an NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBCCgrEFCBCgrFE
6 5 3anbi3d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrDEACCgrDFBCCgrEFABCgrDEACCgrDFCBCgrFE
7 3ancoma ABCgrDEACCgrDFCBCgrFEACCgrDFABCgrDECBCgrFE
8 6 7 bitrdi NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrDEACCgrDFBCCgrEFACCgrDFABCgrDECBCgrFE
9 brcgr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFABCgrDEACCgrDFBCCgrEF
10 biid NN
11 3ancomb A𝔼NB𝔼NC𝔼NA𝔼NC𝔼NB𝔼N
12 3ancomb D𝔼NE𝔼NF𝔼ND𝔼NF𝔼NE𝔼N
13 brcgr3 NA𝔼NC𝔼NB𝔼ND𝔼NF𝔼NE𝔼NACBCgr3DFEACCgrDFABCgrDECBCgrFE
14 10 11 12 13 syl3anb NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NACBCgr3DFEACCgrDFABCgrDECBCgrFE
15 8 9 14 3bitr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFACBCgr3DFE