| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgracol.p |
|- P = ( Base ` G ) |
| 2 |
|
cgracol.i |
|- I = ( Itv ` G ) |
| 3 |
|
cgracol.m |
|- .- = ( dist ` G ) |
| 4 |
|
cgracol.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
cgracol.a |
|- ( ph -> A e. P ) |
| 6 |
|
cgracol.b |
|- ( ph -> B e. P ) |
| 7 |
|
cgracol.c |
|- ( ph -> C e. P ) |
| 8 |
|
cgracol.d |
|- ( ph -> D e. P ) |
| 9 |
|
cgracol.e |
|- ( ph -> E e. P ) |
| 10 |
|
cgracol.f |
|- ( ph -> F e. P ) |
| 11 |
|
cgracol.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 12 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
| 13 |
1 2 12 4 5 6 7 8 9 10 11
|
cgrane2 |
|- ( ph -> B =/= C ) |
| 14 |
13
|
necomd |
|- ( ph -> C =/= B ) |
| 15 |
1 2 12 4 5 6 7 8 9 10 11
|
cgrane1 |
|- ( ph -> A =/= B ) |
| 16 |
15
|
necomd |
|- ( ph -> B =/= A ) |
| 17 |
1 2 4 12 7 6 5 14 16
|
cgraswap |
|- ( ph -> <" C B A "> ( cgrA ` G ) <" A B C "> ) |
| 18 |
1 2 4 12 7 6 5 5 6 7 17 8 9 10 11
|
cgratr |
|- ( ph -> <" C B A "> ( cgrA ` G ) <" D E F "> ) |
| 19 |
1 2 12 4 5 6 7 8 9 10 11
|
cgrane3 |
|- ( ph -> E =/= D ) |
| 20 |
19
|
necomd |
|- ( ph -> D =/= E ) |
| 21 |
1 2 12 4 5 6 7 8 9 10 11
|
cgrane4 |
|- ( ph -> E =/= F ) |
| 22 |
1 2 4 12 8 9 10 20 21
|
cgraswap |
|- ( ph -> <" D E F "> ( cgrA ` G ) <" F E D "> ) |
| 23 |
1 2 4 12 7 6 5 8 9 10 18 10 9 8 22
|
cgratr |
|- ( ph -> <" C B A "> ( cgrA ` G ) <" F E D "> ) |