Metamath Proof Explorer


Theorem chm0

Description: Meet with Hilbert lattice zero. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chm0
|- ( A e. CH -> ( A i^i 0H ) = 0H )

Proof

Step Hyp Ref Expression
1 ineq1
 |-  ( A = if ( A e. CH , A , 0H ) -> ( A i^i 0H ) = ( if ( A e. CH , A , 0H ) i^i 0H ) )
2 1 eqeq1d
 |-  ( A = if ( A e. CH , A , 0H ) -> ( ( A i^i 0H ) = 0H <-> ( if ( A e. CH , A , 0H ) i^i 0H ) = 0H ) )
3 h0elch
 |-  0H e. CH
4 3 elimel
 |-  if ( A e. CH , A , 0H ) e. CH
5 4 chm0i
 |-  ( if ( A e. CH , A , 0H ) i^i 0H ) = 0H
6 2 5 dedth
 |-  ( A e. CH -> ( A i^i 0H ) = 0H )