| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdeq |
|- ( A = B -> Word A = Word B ) |
| 2 |
|
rabeq |
|- ( Word A = Word B -> { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) } = { c e. Word B | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) } ) |
| 3 |
1 2
|
syl |
|- ( A = B -> { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) } = { c e. Word B | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) } ) |
| 4 |
|
df-chn |
|- ( .< Chain A ) = { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) } |
| 5 |
|
df-chn |
|- ( .< Chain B ) = { c e. Word B | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) } |
| 6 |
3 4 5
|
3eqtr4g |
|- ( A = B -> ( .< Chain A ) = ( .< Chain B ) ) |