| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdeq |
⊢ ( 𝐴 = 𝐵 → Word 𝐴 = Word 𝐵 ) |
| 2 |
|
rabeq |
⊢ ( Word 𝐴 = Word 𝐵 → { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) } = { 𝑐 ∈ Word 𝐵 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) } ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 = 𝐵 → { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) } = { 𝑐 ∈ Word 𝐵 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) } ) |
| 4 |
|
df-chn |
⊢ ( < Chain 𝐴 ) = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) } |
| 5 |
|
df-chn |
⊢ ( < Chain 𝐵 ) = { 𝑐 ∈ Word 𝐵 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) } |
| 6 |
3 4 5
|
3eqtr4g |
⊢ ( 𝐴 = 𝐵 → ( < Chain 𝐴 ) = ( < Chain 𝐵 ) ) |