Metamath Proof Explorer


Theorem chneq2

Description: Equality theorem for chains. (Contributed by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion chneq2 ( 𝐴 = 𝐵 → ( < Chain 𝐴 ) = ( < Chain 𝐵 ) )

Proof

Step Hyp Ref Expression
1 wrdeq ( 𝐴 = 𝐵 → Word 𝐴 = Word 𝐵 )
2 rabeq ( Word 𝐴 = Word 𝐵 → { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) } = { 𝑐 ∈ Word 𝐵 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) } )
3 1 2 syl ( 𝐴 = 𝐵 → { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) } = { 𝑐 ∈ Word 𝐵 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) } )
4 df-chn ( < Chain 𝐴 ) = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) }
5 df-chn ( < Chain 𝐵 ) = { 𝑐 ∈ Word 𝐵 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) }
6 3 4 5 3eqtr4g ( 𝐴 = 𝐵 → ( < Chain 𝐴 ) = ( < Chain 𝐵 ) )