| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chscl.1 |
|- ( ph -> A e. CH ) |
| 2 |
|
chscl.2 |
|- ( ph -> B e. CH ) |
| 3 |
|
chscl.3 |
|- ( ph -> B C_ ( _|_ ` A ) ) |
| 4 |
|
chsh |
|- ( A e. CH -> A e. SH ) |
| 5 |
1 4
|
syl |
|- ( ph -> A e. SH ) |
| 6 |
|
chsh |
|- ( B e. CH -> B e. SH ) |
| 7 |
2 6
|
syl |
|- ( ph -> B e. SH ) |
| 8 |
|
shscl |
|- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) e. SH ) |
| 9 |
5 7 8
|
syl2anc |
|- ( ph -> ( A +H B ) e. SH ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> A e. CH ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> B e. CH ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> B C_ ( _|_ ` A ) ) |
| 13 |
|
simprl |
|- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> f : NN --> ( A +H B ) ) |
| 14 |
|
simprr |
|- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> f ~~>v z ) |
| 15 |
|
eqid |
|- ( x e. NN |-> ( ( projh ` A ) ` ( f ` x ) ) ) = ( x e. NN |-> ( ( projh ` A ) ` ( f ` x ) ) ) |
| 16 |
|
eqid |
|- ( x e. NN |-> ( ( projh ` B ) ` ( f ` x ) ) ) = ( x e. NN |-> ( ( projh ` B ) ` ( f ` x ) ) ) |
| 17 |
10 11 12 13 14 15 16
|
chscllem4 |
|- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> z e. ( A +H B ) ) |
| 18 |
17
|
ex |
|- ( ph -> ( ( f : NN --> ( A +H B ) /\ f ~~>v z ) -> z e. ( A +H B ) ) ) |
| 19 |
18
|
alrimivv |
|- ( ph -> A. f A. z ( ( f : NN --> ( A +H B ) /\ f ~~>v z ) -> z e. ( A +H B ) ) ) |
| 20 |
|
isch2 |
|- ( ( A +H B ) e. CH <-> ( ( A +H B ) e. SH /\ A. f A. z ( ( f : NN --> ( A +H B ) /\ f ~~>v z ) -> z e. ( A +H B ) ) ) ) |
| 21 |
9 19 20
|
sylanbrc |
|- ( ph -> ( A +H B ) e. CH ) |