Metamath Proof Explorer


Theorem chscl

Description: The subspace sum of two closed orthogonal spaces is closed. (Contributed by NM, 19-Oct-1999) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses chscl.1 φAC
chscl.2 φBC
chscl.3 φBA
Assertion chscl φA+BC

Proof

Step Hyp Ref Expression
1 chscl.1 φAC
2 chscl.2 φBC
3 chscl.3 φBA
4 chsh ACAS
5 1 4 syl φAS
6 chsh BCBS
7 2 6 syl φBS
8 shscl ASBSA+BS
9 5 7 8 syl2anc φA+BS
10 1 adantr φf:A+BfvzAC
11 2 adantr φf:A+BfvzBC
12 3 adantr φf:A+BfvzBA
13 simprl φf:A+Bfvzf:A+B
14 simprr φf:A+Bfvzfvz
15 eqid xprojAfx=xprojAfx
16 eqid xprojBfx=xprojBfx
17 10 11 12 13 14 15 16 chscllem4 φf:A+BfvzzA+B
18 17 ex φf:A+BfvzzA+B
19 18 alrimivv φfzf:A+BfvzzA+B
20 isch2 A+BCA+BSfzf:A+BfvzzA+B
21 9 19 20 sylanbrc φA+BC