| Step |
Hyp |
Ref |
Expression |
| 1 |
|
circtopn.i |
|- I = ( 0 [,] ( 2 x. _pi ) ) |
| 2 |
|
circtopn.j |
|- J = ( topGen ` ran (,) ) |
| 3 |
|
circtopn.f |
|- F = ( x e. RR |-> ( exp ` ( _i x. x ) ) ) |
| 4 |
|
circtopn.c |
|- C = ( `' abs " { 1 } ) |
| 5 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 6 |
2 5
|
eqeltri |
|- J e. ( TopOn ` RR ) |
| 7 |
3 4
|
efifo |
|- F : RR -onto-> C |
| 8 |
|
fofn |
|- ( F : RR -onto-> C -> F Fn RR ) |
| 9 |
7 8
|
ax-mp |
|- F Fn RR |
| 10 |
|
qtopid |
|- ( ( J e. ( TopOn ` RR ) /\ F Fn RR ) -> F e. ( J Cn ( J qTop F ) ) ) |
| 11 |
6 9 10
|
mp2an |
|- F e. ( J Cn ( J qTop F ) ) |