| Step | Hyp | Ref | Expression | 
						
							| 1 |  | circtopn.i |  |-  I = ( 0 [,] ( 2 x. _pi ) ) | 
						
							| 2 |  | circtopn.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 3 |  | circtopn.f |  |-  F = ( x e. RR |-> ( exp ` ( _i x. x ) ) ) | 
						
							| 4 |  | circtopn.c |  |-  C = ( `' abs " { 1 } ) | 
						
							| 5 |  | retopon |  |-  ( topGen ` ran (,) ) e. ( TopOn ` RR ) | 
						
							| 6 | 2 5 | eqeltri |  |-  J e. ( TopOn ` RR ) | 
						
							| 7 | 3 4 | efifo |  |-  F : RR -onto-> C | 
						
							| 8 |  | fofn |  |-  ( F : RR -onto-> C -> F Fn RR ) | 
						
							| 9 | 7 8 | ax-mp |  |-  F Fn RR | 
						
							| 10 |  | qtopid |  |-  ( ( J e. ( TopOn ` RR ) /\ F Fn RR ) -> F e. ( J Cn ( J qTop F ) ) ) | 
						
							| 11 | 6 9 10 | mp2an |  |-  F e. ( J Cn ( J qTop F ) ) |