Metamath Proof Explorer


Theorem circcn

Description: The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020)

Ref Expression
Hypotheses circtopn.i
|- I = ( 0 [,] ( 2 x. _pi ) )
circtopn.j
|- J = ( topGen ` ran (,) )
circtopn.f
|- F = ( x e. RR |-> ( exp ` ( _i x. x ) ) )
circtopn.c
|- C = ( `' abs " { 1 } )
Assertion circcn
|- F e. ( J Cn ( J qTop F ) )

Proof

Step Hyp Ref Expression
1 circtopn.i
 |-  I = ( 0 [,] ( 2 x. _pi ) )
2 circtopn.j
 |-  J = ( topGen ` ran (,) )
3 circtopn.f
 |-  F = ( x e. RR |-> ( exp ` ( _i x. x ) ) )
4 circtopn.c
 |-  C = ( `' abs " { 1 } )
5 retopon
 |-  ( topGen ` ran (,) ) e. ( TopOn ` RR )
6 2 5 eqeltri
 |-  J e. ( TopOn ` RR )
7 3 4 efifo
 |-  F : RR -onto-> C
8 fofn
 |-  ( F : RR -onto-> C -> F Fn RR )
9 7 8 ax-mp
 |-  F Fn RR
10 qtopid
 |-  ( ( J e. ( TopOn ` RR ) /\ F Fn RR ) -> F e. ( J Cn ( J qTop F ) ) )
11 6 9 10 mp2an
 |-  F e. ( J Cn ( J qTop F ) )