Metamath Proof Explorer


Theorem circcn

Description: The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020)

Ref Expression
Hypotheses circtopn.i 𝐼 = ( 0 [,] ( 2 · π ) )
circtopn.j 𝐽 = ( topGen ‘ ran (,) )
circtopn.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) )
circtopn.c 𝐶 = ( abs “ { 1 } )
Assertion circcn 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) )

Proof

Step Hyp Ref Expression
1 circtopn.i 𝐼 = ( 0 [,] ( 2 · π ) )
2 circtopn.j 𝐽 = ( topGen ‘ ran (,) )
3 circtopn.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) )
4 circtopn.c 𝐶 = ( abs “ { 1 } )
5 retopon ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ )
6 2 5 eqeltri 𝐽 ∈ ( TopOn ‘ ℝ )
7 3 4 efifo 𝐹 : ℝ –onto𝐶
8 fofn ( 𝐹 : ℝ –onto𝐶𝐹 Fn ℝ )
9 7 8 ax-mp 𝐹 Fn ℝ
10 qtopid ( ( 𝐽 ∈ ( TopOn ‘ ℝ ) ∧ 𝐹 Fn ℝ ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) )
11 6 9 10 mp2an 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) )