Description: The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | circtopn.i | ⊢ 𝐼 = ( 0 [,] ( 2 · π ) ) | |
circtopn.j | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | ||
circtopn.f | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) | ||
circtopn.c | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | ||
Assertion | circcn | ⊢ 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | circtopn.i | ⊢ 𝐼 = ( 0 [,] ( 2 · π ) ) | |
2 | circtopn.j | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
3 | circtopn.f | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) | |
4 | circtopn.c | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | |
5 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
6 | 2 5 | eqeltri | ⊢ 𝐽 ∈ ( TopOn ‘ ℝ ) |
7 | 3 4 | efifo | ⊢ 𝐹 : ℝ –onto→ 𝐶 |
8 | fofn | ⊢ ( 𝐹 : ℝ –onto→ 𝐶 → 𝐹 Fn ℝ ) | |
9 | 7 8 | ax-mp | ⊢ 𝐹 Fn ℝ |
10 | qtopid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℝ ) ∧ 𝐹 Fn ℝ ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) | |
11 | 6 9 10 | mp2an | ⊢ 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) |