| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efifo.1 | ⊢ 𝐹  =  ( 𝑧  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) | 
						
							| 2 |  | efifo.2 | ⊢ 𝐶  =  ( ◡ abs  “  { 1 } ) | 
						
							| 3 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 4 |  | recn | ⊢ ( 𝑧  ∈  ℝ  →  𝑧  ∈  ℂ ) | 
						
							| 5 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( i  ·  𝑧 )  ∈  ℂ ) | 
						
							| 6 | 3 4 5 | sylancr | ⊢ ( 𝑧  ∈  ℝ  →  ( i  ·  𝑧 )  ∈  ℂ ) | 
						
							| 7 |  | efcl | ⊢ ( ( i  ·  𝑧 )  ∈  ℂ  →  ( exp ‘ ( i  ·  𝑧 ) )  ∈  ℂ ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑧  ∈  ℝ  →  ( exp ‘ ( i  ·  𝑧 ) )  ∈  ℂ ) | 
						
							| 9 |  | absefi | ⊢ ( 𝑧  ∈  ℝ  →  ( abs ‘ ( exp ‘ ( i  ·  𝑧 ) ) )  =  1 ) | 
						
							| 10 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 11 |  | ffn | ⊢ ( abs : ℂ ⟶ ℝ  →  abs  Fn  ℂ ) | 
						
							| 12 |  | fniniseg | ⊢ ( abs  Fn  ℂ  →  ( ( exp ‘ ( i  ·  𝑧 ) )  ∈  ( ◡ abs  “  { 1 } )  ↔  ( ( exp ‘ ( i  ·  𝑧 ) )  ∈  ℂ  ∧  ( abs ‘ ( exp ‘ ( i  ·  𝑧 ) ) )  =  1 ) ) ) | 
						
							| 13 | 10 11 12 | mp2b | ⊢ ( ( exp ‘ ( i  ·  𝑧 ) )  ∈  ( ◡ abs  “  { 1 } )  ↔  ( ( exp ‘ ( i  ·  𝑧 ) )  ∈  ℂ  ∧  ( abs ‘ ( exp ‘ ( i  ·  𝑧 ) ) )  =  1 ) ) | 
						
							| 14 | 8 9 13 | sylanbrc | ⊢ ( 𝑧  ∈  ℝ  →  ( exp ‘ ( i  ·  𝑧 ) )  ∈  ( ◡ abs  “  { 1 } ) ) | 
						
							| 15 | 14 2 | eleqtrrdi | ⊢ ( 𝑧  ∈  ℝ  →  ( exp ‘ ( i  ·  𝑧 ) )  ∈  𝐶 ) | 
						
							| 16 | 1 15 | fmpti | ⊢ 𝐹 : ℝ ⟶ 𝐶 | 
						
							| 17 |  | ffn | ⊢ ( 𝐹 : ℝ ⟶ 𝐶  →  𝐹  Fn  ℝ ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ 𝐹  Fn  ℝ | 
						
							| 19 |  | frn | ⊢ ( 𝐹 : ℝ ⟶ 𝐶  →  ran  𝐹  ⊆  𝐶 ) | 
						
							| 20 | 16 19 | ax-mp | ⊢ ran  𝐹  ⊆  𝐶 | 
						
							| 21 |  | df-ima | ⊢ ( 𝐹  “  ( 0 (,] ( 2  ·  π ) ) )  =  ran  ( 𝐹  ↾  ( 0 (,] ( 2  ·  π ) ) ) | 
						
							| 22 | 1 | reseq1i | ⊢ ( 𝐹  ↾  ( 0 (,] ( 2  ·  π ) ) )  =  ( ( 𝑧  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑧 ) ) )  ↾  ( 0 (,] ( 2  ·  π ) ) ) | 
						
							| 23 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 24 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 25 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 26 | 24 25 | remulcli | ⊢ ( 2  ·  π )  ∈  ℝ | 
						
							| 27 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( 2  ·  π )  ∈  ℝ )  →  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↔  ( 𝑧  ∈  ℝ  ∧  0  <  𝑧  ∧  𝑧  ≤  ( 2  ·  π ) ) ) ) | 
						
							| 28 | 23 26 27 | mp2an | ⊢ ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↔  ( 𝑧  ∈  ℝ  ∧  0  <  𝑧  ∧  𝑧  ≤  ( 2  ·  π ) ) ) | 
						
							| 29 | 28 | simp1bi | ⊢ ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  →  𝑧  ∈  ℝ ) | 
						
							| 30 | 29 | ssriv | ⊢ ( 0 (,] ( 2  ·  π ) )  ⊆  ℝ | 
						
							| 31 |  | resmpt | ⊢ ( ( 0 (,] ( 2  ·  π ) )  ⊆  ℝ  →  ( ( 𝑧  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑧 ) ) )  ↾  ( 0 (,] ( 2  ·  π ) ) )  =  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) ) | 
						
							| 32 | 30 31 | ax-mp | ⊢ ( ( 𝑧  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑧 ) ) )  ↾  ( 0 (,] ( 2  ·  π ) ) )  =  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) | 
						
							| 33 | 22 32 | eqtri | ⊢ ( 𝐹  ↾  ( 0 (,] ( 2  ·  π ) ) )  =  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) | 
						
							| 34 | 33 | rneqi | ⊢ ran  ( 𝐹  ↾  ( 0 (,] ( 2  ·  π ) ) )  =  ran  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) | 
						
							| 35 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 36 |  | eqid | ⊢ ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) )  =  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) | 
						
							| 37 | 26 | recni | ⊢ ( 2  ·  π )  ∈  ℂ | 
						
							| 38 | 37 | addlidi | ⊢ ( 0  +  ( 2  ·  π ) )  =  ( 2  ·  π ) | 
						
							| 39 | 38 | oveq2i | ⊢ ( 0 (,] ( 0  +  ( 2  ·  π ) ) )  =  ( 0 (,] ( 2  ·  π ) ) | 
						
							| 40 | 39 | eqcomi | ⊢ ( 0 (,] ( 2  ·  π ) )  =  ( 0 (,] ( 0  +  ( 2  ·  π ) ) ) | 
						
							| 41 | 36 2 40 | efif1o | ⊢ ( 0  ∈  ℝ  →  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) : ( 0 (,] ( 2  ·  π ) ) –1-1-onto→ 𝐶 ) | 
						
							| 42 | 35 41 | ax-mp | ⊢ ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) : ( 0 (,] ( 2  ·  π ) ) –1-1-onto→ 𝐶 | 
						
							| 43 |  | f1ofo | ⊢ ( ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) : ( 0 (,] ( 2  ·  π ) ) –1-1-onto→ 𝐶  →  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) : ( 0 (,] ( 2  ·  π ) ) –onto→ 𝐶 ) | 
						
							| 44 |  | forn | ⊢ ( ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) ) : ( 0 (,] ( 2  ·  π ) ) –onto→ 𝐶  →  ran  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) )  =  𝐶 ) | 
						
							| 45 | 42 43 44 | mp2b | ⊢ ran  ( 𝑧  ∈  ( 0 (,] ( 2  ·  π ) )  ↦  ( exp ‘ ( i  ·  𝑧 ) ) )  =  𝐶 | 
						
							| 46 | 34 45 | eqtri | ⊢ ran  ( 𝐹  ↾  ( 0 (,] ( 2  ·  π ) ) )  =  𝐶 | 
						
							| 47 | 21 46 | eqtri | ⊢ ( 𝐹  “  ( 0 (,] ( 2  ·  π ) ) )  =  𝐶 | 
						
							| 48 |  | imassrn | ⊢ ( 𝐹  “  ( 0 (,] ( 2  ·  π ) ) )  ⊆  ran  𝐹 | 
						
							| 49 | 47 48 | eqsstrri | ⊢ 𝐶  ⊆  ran  𝐹 | 
						
							| 50 | 20 49 | eqssi | ⊢ ran  𝐹  =  𝐶 | 
						
							| 51 |  | df-fo | ⊢ ( 𝐹 : ℝ –onto→ 𝐶  ↔  ( 𝐹  Fn  ℝ  ∧  ran  𝐹  =  𝐶 ) ) | 
						
							| 52 | 18 50 51 | mpbir2an | ⊢ 𝐹 : ℝ –onto→ 𝐶 |