| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efifo.1 |  |-  F = ( z e. RR |-> ( exp ` ( _i x. z ) ) ) | 
						
							| 2 |  | efifo.2 |  |-  C = ( `' abs " { 1 } ) | 
						
							| 3 |  | ax-icn |  |-  _i e. CC | 
						
							| 4 |  | recn |  |-  ( z e. RR -> z e. CC ) | 
						
							| 5 |  | mulcl |  |-  ( ( _i e. CC /\ z e. CC ) -> ( _i x. z ) e. CC ) | 
						
							| 6 | 3 4 5 | sylancr |  |-  ( z e. RR -> ( _i x. z ) e. CC ) | 
						
							| 7 |  | efcl |  |-  ( ( _i x. z ) e. CC -> ( exp ` ( _i x. z ) ) e. CC ) | 
						
							| 8 | 6 7 | syl |  |-  ( z e. RR -> ( exp ` ( _i x. z ) ) e. CC ) | 
						
							| 9 |  | absefi |  |-  ( z e. RR -> ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) | 
						
							| 10 |  | absf |  |-  abs : CC --> RR | 
						
							| 11 |  | ffn |  |-  ( abs : CC --> RR -> abs Fn CC ) | 
						
							| 12 |  | fniniseg |  |-  ( abs Fn CC -> ( ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) <-> ( ( exp ` ( _i x. z ) ) e. CC /\ ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) ) ) | 
						
							| 13 | 10 11 12 | mp2b |  |-  ( ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) <-> ( ( exp ` ( _i x. z ) ) e. CC /\ ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) ) | 
						
							| 14 | 8 9 13 | sylanbrc |  |-  ( z e. RR -> ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) ) | 
						
							| 15 | 14 2 | eleqtrrdi |  |-  ( z e. RR -> ( exp ` ( _i x. z ) ) e. C ) | 
						
							| 16 | 1 15 | fmpti |  |-  F : RR --> C | 
						
							| 17 |  | ffn |  |-  ( F : RR --> C -> F Fn RR ) | 
						
							| 18 | 16 17 | ax-mp |  |-  F Fn RR | 
						
							| 19 |  | frn |  |-  ( F : RR --> C -> ran F C_ C ) | 
						
							| 20 | 16 19 | ax-mp |  |-  ran F C_ C | 
						
							| 21 |  | df-ima |  |-  ( F " ( 0 (,] ( 2 x. _pi ) ) ) = ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) | 
						
							| 22 | 1 | reseq1i |  |-  ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) | 
						
							| 23 |  | 0xr |  |-  0 e. RR* | 
						
							| 24 |  | 2re |  |-  2 e. RR | 
						
							| 25 |  | pire |  |-  _pi e. RR | 
						
							| 26 | 24 25 | remulcli |  |-  ( 2 x. _pi ) e. RR | 
						
							| 27 |  | elioc2 |  |-  ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR ) -> ( z e. ( 0 (,] ( 2 x. _pi ) ) <-> ( z e. RR /\ 0 < z /\ z <_ ( 2 x. _pi ) ) ) ) | 
						
							| 28 | 23 26 27 | mp2an |  |-  ( z e. ( 0 (,] ( 2 x. _pi ) ) <-> ( z e. RR /\ 0 < z /\ z <_ ( 2 x. _pi ) ) ) | 
						
							| 29 | 28 | simp1bi |  |-  ( z e. ( 0 (,] ( 2 x. _pi ) ) -> z e. RR ) | 
						
							| 30 | 29 | ssriv |  |-  ( 0 (,] ( 2 x. _pi ) ) C_ RR | 
						
							| 31 |  | resmpt |  |-  ( ( 0 (,] ( 2 x. _pi ) ) C_ RR -> ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) ) | 
						
							| 32 | 30 31 | ax-mp |  |-  ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) | 
						
							| 33 | 22 32 | eqtri |  |-  ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) | 
						
							| 34 | 33 | rneqi |  |-  ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) | 
						
							| 35 |  | 0re |  |-  0 e. RR | 
						
							| 36 |  | eqid |  |-  ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) | 
						
							| 37 | 26 | recni |  |-  ( 2 x. _pi ) e. CC | 
						
							| 38 | 37 | addlidi |  |-  ( 0 + ( 2 x. _pi ) ) = ( 2 x. _pi ) | 
						
							| 39 | 38 | oveq2i |  |-  ( 0 (,] ( 0 + ( 2 x. _pi ) ) ) = ( 0 (,] ( 2 x. _pi ) ) | 
						
							| 40 | 39 | eqcomi |  |-  ( 0 (,] ( 2 x. _pi ) ) = ( 0 (,] ( 0 + ( 2 x. _pi ) ) ) | 
						
							| 41 | 36 2 40 | efif1o |  |-  ( 0 e. RR -> ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C ) | 
						
							| 42 | 35 41 | ax-mp |  |-  ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C | 
						
							| 43 |  | f1ofo |  |-  ( ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C -> ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -onto-> C ) | 
						
							| 44 |  | forn |  |-  ( ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -onto-> C -> ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = C ) | 
						
							| 45 | 42 43 44 | mp2b |  |-  ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = C | 
						
							| 46 | 34 45 | eqtri |  |-  ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = C | 
						
							| 47 | 21 46 | eqtri |  |-  ( F " ( 0 (,] ( 2 x. _pi ) ) ) = C | 
						
							| 48 |  | imassrn |  |-  ( F " ( 0 (,] ( 2 x. _pi ) ) ) C_ ran F | 
						
							| 49 | 47 48 | eqsstrri |  |-  C C_ ran F | 
						
							| 50 | 20 49 | eqssi |  |-  ran F = C | 
						
							| 51 |  | df-fo |  |-  ( F : RR -onto-> C <-> ( F Fn RR /\ ran F = C ) ) | 
						
							| 52 | 18 50 51 | mpbir2an |  |-  F : RR -onto-> C |