| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efif1o.1 |  |-  F = ( w e. D |-> ( exp ` ( _i x. w ) ) ) | 
						
							| 2 |  | efif1o.2 |  |-  C = ( `' abs " { 1 } ) | 
						
							| 3 |  | efif1o.3 |  |-  D = ( A (,] ( A + ( 2 x. _pi ) ) ) | 
						
							| 4 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 5 |  | 2re |  |-  2 e. RR | 
						
							| 6 |  | pire |  |-  _pi e. RR | 
						
							| 7 | 5 6 | remulcli |  |-  ( 2 x. _pi ) e. RR | 
						
							| 8 |  | readdcl |  |-  ( ( A e. RR /\ ( 2 x. _pi ) e. RR ) -> ( A + ( 2 x. _pi ) ) e. RR ) | 
						
							| 9 | 7 8 | mpan2 |  |-  ( A e. RR -> ( A + ( 2 x. _pi ) ) e. RR ) | 
						
							| 10 |  | elioc2 |  |-  ( ( A e. RR* /\ ( A + ( 2 x. _pi ) ) e. RR ) -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) | 
						
							| 11 | 4 9 10 | syl2anc |  |-  ( A e. RR -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) | 
						
							| 12 |  | simp1 |  |-  ( ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) -> x e. RR ) | 
						
							| 13 | 11 12 | biimtrdi |  |-  ( A e. RR -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) -> x e. RR ) ) | 
						
							| 14 | 13 | ssrdv |  |-  ( A e. RR -> ( A (,] ( A + ( 2 x. _pi ) ) ) C_ RR ) | 
						
							| 15 | 3 14 | eqsstrid |  |-  ( A e. RR -> D C_ RR ) | 
						
							| 16 | 3 | efif1olem1 |  |-  ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( abs ` ( x - y ) ) < ( 2 x. _pi ) ) | 
						
							| 17 | 3 | efif1olem2 |  |-  ( ( A e. RR /\ z e. RR ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) | 
						
							| 18 |  | eqid |  |-  ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) | 
						
							| 19 | 1 2 15 16 17 18 | efif1olem4 |  |-  ( A e. RR -> F : D -1-1-onto-> C ) |