| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efif1o.1 |
|- F = ( w e. D |-> ( exp ` ( _i x. w ) ) ) |
| 2 |
|
efif1o.2 |
|- C = ( `' abs " { 1 } ) |
| 3 |
|
efif1o.3 |
|- D = ( A (,] ( A + ( 2 x. _pi ) ) ) |
| 4 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 5 |
|
2re |
|- 2 e. RR |
| 6 |
|
pire |
|- _pi e. RR |
| 7 |
5 6
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 8 |
|
readdcl |
|- ( ( A e. RR /\ ( 2 x. _pi ) e. RR ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
| 9 |
7 8
|
mpan2 |
|- ( A e. RR -> ( A + ( 2 x. _pi ) ) e. RR ) |
| 10 |
|
elioc2 |
|- ( ( A e. RR* /\ ( A + ( 2 x. _pi ) ) e. RR ) -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) |
| 11 |
4 9 10
|
syl2anc |
|- ( A e. RR -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) |
| 12 |
|
simp1 |
|- ( ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) -> x e. RR ) |
| 13 |
11 12
|
biimtrdi |
|- ( A e. RR -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) -> x e. RR ) ) |
| 14 |
13
|
ssrdv |
|- ( A e. RR -> ( A (,] ( A + ( 2 x. _pi ) ) ) C_ RR ) |
| 15 |
3 14
|
eqsstrid |
|- ( A e. RR -> D C_ RR ) |
| 16 |
3
|
efif1olem1 |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( abs ` ( x - y ) ) < ( 2 x. _pi ) ) |
| 17 |
3
|
efif1olem2 |
|- ( ( A e. RR /\ z e. RR ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |
| 18 |
|
eqid |
|- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 19 |
1 2 15 16 17 18
|
efif1olem4 |
|- ( A e. RR -> F : D -1-1-onto-> C ) |