| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efif1olem1.1 |
|- D = ( A (,] ( A + ( 2 x. _pi ) ) ) |
| 2 |
|
simpl |
|- ( ( A e. RR /\ z e. RR ) -> A e. RR ) |
| 3 |
|
2re |
|- 2 e. RR |
| 4 |
|
pire |
|- _pi e. RR |
| 5 |
3 4
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 6 |
|
readdcl |
|- ( ( A e. RR /\ ( 2 x. _pi ) e. RR ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
| 7 |
2 5 6
|
sylancl |
|- ( ( A e. RR /\ z e. RR ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
| 8 |
|
resubcl |
|- ( ( A e. RR /\ z e. RR ) -> ( A - z ) e. RR ) |
| 9 |
|
2pos |
|- 0 < 2 |
| 10 |
|
pipos |
|- 0 < _pi |
| 11 |
3 4 9 10
|
mulgt0ii |
|- 0 < ( 2 x. _pi ) |
| 12 |
5 11
|
elrpii |
|- ( 2 x. _pi ) e. RR+ |
| 13 |
|
modcl |
|- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( A - z ) mod ( 2 x. _pi ) ) e. RR ) |
| 14 |
8 12 13
|
sylancl |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A - z ) mod ( 2 x. _pi ) ) e. RR ) |
| 15 |
7 14
|
resubcld |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. RR ) |
| 16 |
5
|
a1i |
|- ( ( A e. RR /\ z e. RR ) -> ( 2 x. _pi ) e. RR ) |
| 17 |
|
modlt |
|- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( A - z ) mod ( 2 x. _pi ) ) < ( 2 x. _pi ) ) |
| 18 |
8 12 17
|
sylancl |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A - z ) mod ( 2 x. _pi ) ) < ( 2 x. _pi ) ) |
| 19 |
14 16 2 18
|
ltadd2dd |
|- ( ( A e. RR /\ z e. RR ) -> ( A + ( ( A - z ) mod ( 2 x. _pi ) ) ) < ( A + ( 2 x. _pi ) ) ) |
| 20 |
2 14 7
|
ltaddsubd |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( ( A - z ) mod ( 2 x. _pi ) ) ) < ( A + ( 2 x. _pi ) ) <-> A < ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) ) |
| 21 |
19 20
|
mpbid |
|- ( ( A e. RR /\ z e. RR ) -> A < ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) |
| 22 |
|
modge0 |
|- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR+ ) -> 0 <_ ( ( A - z ) mod ( 2 x. _pi ) ) ) |
| 23 |
8 12 22
|
sylancl |
|- ( ( A e. RR /\ z e. RR ) -> 0 <_ ( ( A - z ) mod ( 2 x. _pi ) ) ) |
| 24 |
7 14
|
subge02d |
|- ( ( A e. RR /\ z e. RR ) -> ( 0 <_ ( ( A - z ) mod ( 2 x. _pi ) ) <-> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) <_ ( A + ( 2 x. _pi ) ) ) ) |
| 25 |
23 24
|
mpbid |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) <_ ( A + ( 2 x. _pi ) ) ) |
| 26 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 27 |
|
elioc2 |
|- ( ( A e. RR* /\ ( A + ( 2 x. _pi ) ) e. RR ) -> ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. RR /\ A < ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) /\ ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) <_ ( A + ( 2 x. _pi ) ) ) ) ) |
| 28 |
26 7 27
|
syl2an2r |
|- ( ( A e. RR /\ z e. RR ) -> ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. RR /\ A < ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) /\ ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) <_ ( A + ( 2 x. _pi ) ) ) ) ) |
| 29 |
15 21 25 28
|
mpbir3and |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. ( A (,] ( A + ( 2 x. _pi ) ) ) ) |
| 30 |
29 1
|
eleqtrrdi |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. D ) |
| 31 |
|
modval |
|- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( A - z ) mod ( 2 x. _pi ) ) = ( ( A - z ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 32 |
8 12 31
|
sylancl |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A - z ) mod ( 2 x. _pi ) ) = ( ( A - z ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 33 |
32
|
oveq2d |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) = ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) ) |
| 34 |
7
|
recnd |
|- ( ( A e. RR /\ z e. RR ) -> ( A + ( 2 x. _pi ) ) e. CC ) |
| 35 |
8
|
recnd |
|- ( ( A e. RR /\ z e. RR ) -> ( A - z ) e. CC ) |
| 36 |
5 11
|
gt0ne0ii |
|- ( 2 x. _pi ) =/= 0 |
| 37 |
|
redivcl |
|- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR /\ ( 2 x. _pi ) =/= 0 ) -> ( ( A - z ) / ( 2 x. _pi ) ) e. RR ) |
| 38 |
5 36 37
|
mp3an23 |
|- ( ( A - z ) e. RR -> ( ( A - z ) / ( 2 x. _pi ) ) e. RR ) |
| 39 |
8 38
|
syl |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A - z ) / ( 2 x. _pi ) ) e. RR ) |
| 40 |
39
|
flcld |
|- ( ( A e. RR /\ z e. RR ) -> ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. ZZ ) |
| 41 |
40
|
zred |
|- ( ( A e. RR /\ z e. RR ) -> ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. RR ) |
| 42 |
|
remulcl |
|- ( ( ( 2 x. _pi ) e. RR /\ ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. RR ) -> ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. RR ) |
| 43 |
5 41 42
|
sylancr |
|- ( ( A e. RR /\ z e. RR ) -> ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. RR ) |
| 44 |
43
|
recnd |
|- ( ( A e. RR /\ z e. RR ) -> ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. CC ) |
| 45 |
34 35 44
|
subsubd |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) = ( ( ( A + ( 2 x. _pi ) ) - ( A - z ) ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 46 |
2
|
recnd |
|- ( ( A e. RR /\ z e. RR ) -> A e. CC ) |
| 47 |
5
|
recni |
|- ( 2 x. _pi ) e. CC |
| 48 |
47
|
a1i |
|- ( ( A e. RR /\ z e. RR ) -> ( 2 x. _pi ) e. CC ) |
| 49 |
|
simpr |
|- ( ( A e. RR /\ z e. RR ) -> z e. RR ) |
| 50 |
49
|
recnd |
|- ( ( A e. RR /\ z e. RR ) -> z e. CC ) |
| 51 |
46 48 50
|
pnncand |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( A - z ) ) = ( ( 2 x. _pi ) + z ) ) |
| 52 |
51
|
oveq1d |
|- ( ( A e. RR /\ z e. RR ) -> ( ( ( A + ( 2 x. _pi ) ) - ( A - z ) ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( ( ( 2 x. _pi ) + z ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 53 |
33 45 52
|
3eqtrd |
|- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) = ( ( ( 2 x. _pi ) + z ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 54 |
53
|
oveq2d |
|- ( ( A e. RR /\ z e. RR ) -> ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) = ( z - ( ( ( 2 x. _pi ) + z ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) ) |
| 55 |
|
addcl |
|- ( ( ( 2 x. _pi ) e. CC /\ z e. CC ) -> ( ( 2 x. _pi ) + z ) e. CC ) |
| 56 |
47 50 55
|
sylancr |
|- ( ( A e. RR /\ z e. RR ) -> ( ( 2 x. _pi ) + z ) e. CC ) |
| 57 |
50 56 44
|
subsub4d |
|- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( 2 x. _pi ) + z ) ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( z - ( ( ( 2 x. _pi ) + z ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) ) |
| 58 |
56 50
|
negsubdi2d |
|- ( ( A e. RR /\ z e. RR ) -> -u ( ( ( 2 x. _pi ) + z ) - z ) = ( z - ( ( 2 x. _pi ) + z ) ) ) |
| 59 |
48 50
|
pncand |
|- ( ( A e. RR /\ z e. RR ) -> ( ( ( 2 x. _pi ) + z ) - z ) = ( 2 x. _pi ) ) |
| 60 |
59
|
negeqd |
|- ( ( A e. RR /\ z e. RR ) -> -u ( ( ( 2 x. _pi ) + z ) - z ) = -u ( 2 x. _pi ) ) |
| 61 |
58 60
|
eqtr3d |
|- ( ( A e. RR /\ z e. RR ) -> ( z - ( ( 2 x. _pi ) + z ) ) = -u ( 2 x. _pi ) ) |
| 62 |
|
neg1cn |
|- -u 1 e. CC |
| 63 |
47
|
mulm1i |
|- ( -u 1 x. ( 2 x. _pi ) ) = -u ( 2 x. _pi ) |
| 64 |
62 47 63
|
mulcomli |
|- ( ( 2 x. _pi ) x. -u 1 ) = -u ( 2 x. _pi ) |
| 65 |
61 64
|
eqtr4di |
|- ( ( A e. RR /\ z e. RR ) -> ( z - ( ( 2 x. _pi ) + z ) ) = ( ( 2 x. _pi ) x. -u 1 ) ) |
| 66 |
65
|
oveq1d |
|- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( 2 x. _pi ) + z ) ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( ( ( 2 x. _pi ) x. -u 1 ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 67 |
62
|
a1i |
|- ( ( A e. RR /\ z e. RR ) -> -u 1 e. CC ) |
| 68 |
40
|
zcnd |
|- ( ( A e. RR /\ z e. RR ) -> ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. CC ) |
| 69 |
48 67 68
|
subdid |
|- ( ( A e. RR /\ z e. RR ) -> ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( ( ( 2 x. _pi ) x. -u 1 ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 70 |
66 69
|
eqtr4d |
|- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( 2 x. _pi ) + z ) ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 71 |
54 57 70
|
3eqtr2d |
|- ( ( A e. RR /\ z e. RR ) -> ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) = ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 72 |
71
|
oveq1d |
|- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) = ( ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) / ( 2 x. _pi ) ) ) |
| 73 |
|
neg1z |
|- -u 1 e. ZZ |
| 74 |
|
zsubcl |
|- ( ( -u 1 e. ZZ /\ ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. ZZ ) -> ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. ZZ ) |
| 75 |
73 40 74
|
sylancr |
|- ( ( A e. RR /\ z e. RR ) -> ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. ZZ ) |
| 76 |
75
|
zcnd |
|- ( ( A e. RR /\ z e. RR ) -> ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. CC ) |
| 77 |
|
divcan3 |
|- ( ( ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. CC /\ ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) -> ( ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) / ( 2 x. _pi ) ) = ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) |
| 78 |
47 36 77
|
mp3an23 |
|- ( ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. CC -> ( ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) / ( 2 x. _pi ) ) = ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) |
| 79 |
76 78
|
syl |
|- ( ( A e. RR /\ z e. RR ) -> ( ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) / ( 2 x. _pi ) ) = ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) |
| 80 |
72 79
|
eqtrd |
|- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) = ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) |
| 81 |
80 75
|
eqeltrd |
|- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) e. ZZ ) |
| 82 |
|
oveq2 |
|- ( y = ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) -> ( z - y ) = ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) ) |
| 83 |
82
|
oveq1d |
|- ( y = ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) -> ( ( z - y ) / ( 2 x. _pi ) ) = ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) ) |
| 84 |
83
|
eleq1d |
|- ( y = ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) -> ( ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ <-> ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) e. ZZ ) ) |
| 85 |
84
|
rspcev |
|- ( ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. D /\ ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) e. ZZ ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |
| 86 |
30 81 85
|
syl2anc |
|- ( ( A e. RR /\ z e. RR ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |