| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efif1o.1 |
⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) |
| 2 |
|
efif1o.2 |
⊢ 𝐶 = ( ◡ abs “ { 1 } ) |
| 3 |
|
efif1o.3 |
⊢ 𝐷 = ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) |
| 4 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 5 |
|
2re |
⊢ 2 ∈ ℝ |
| 6 |
|
pire |
⊢ π ∈ ℝ |
| 7 |
5 6
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
| 8 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 2 · π ) ∈ ℝ ) → ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) |
| 9 |
7 8
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) |
| 10 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) ) ) |
| 11 |
4 9 10
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) ) ) |
| 12 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) → 𝑥 ∈ ℝ ) |
| 13 |
11 12
|
biimtrdi |
⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) → 𝑥 ∈ ℝ ) ) |
| 14 |
13
|
ssrdv |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ⊆ ℝ ) |
| 15 |
3 14
|
eqsstrid |
⊢ ( 𝐴 ∈ ℝ → 𝐷 ⊆ ℝ ) |
| 16 |
3
|
efif1olem1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
| 17 |
3
|
efif1olem2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 18 |
|
eqid |
⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 19 |
1 2 15 16 17 18
|
efif1olem4 |
⊢ ( 𝐴 ∈ ℝ → 𝐹 : 𝐷 –1-1-onto→ 𝐶 ) |