| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efif1o.1 |
⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) |
| 2 |
|
efif1o.2 |
⊢ 𝐶 = ( ◡ abs “ { 1 } ) |
| 3 |
|
efif1olem4.3 |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
| 4 |
|
efif1olem4.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
| 5 |
|
efif1olem4.5 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 6 |
|
efif1olem4.6 |
⊢ 𝑆 = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 7 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → 𝑤 ∈ ℝ ) |
| 8 |
|
ax-icn |
⊢ i ∈ ℂ |
| 9 |
|
recn |
⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ ) |
| 10 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( i · 𝑤 ) ∈ ℂ ) |
| 11 |
8 9 10
|
sylancr |
⊢ ( 𝑤 ∈ ℝ → ( i · 𝑤 ) ∈ ℂ ) |
| 12 |
|
efcl |
⊢ ( ( i · 𝑤 ) ∈ ℂ → ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑤 ∈ ℝ → ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ) |
| 14 |
|
absefi |
⊢ ( 𝑤 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝑤 ) ) ) = 1 ) |
| 15 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 16 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 17 |
15 16
|
ax-mp |
⊢ abs Fn ℂ |
| 18 |
|
fniniseg |
⊢ ( abs Fn ℂ → ( ( exp ‘ ( i · 𝑤 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑤 ) ) ) = 1 ) ) ) |
| 19 |
17 18
|
ax-mp |
⊢ ( ( exp ‘ ( i · 𝑤 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑤 ) ) ) = 1 ) ) |
| 20 |
13 14 19
|
sylanbrc |
⊢ ( 𝑤 ∈ ℝ → ( exp ‘ ( i · 𝑤 ) ) ∈ ( ◡ abs “ { 1 } ) ) |
| 21 |
20 2
|
eleqtrrdi |
⊢ ( 𝑤 ∈ ℝ → ( exp ‘ ( i · 𝑤 ) ) ∈ 𝐶 ) |
| 22 |
7 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → ( exp ‘ ( i · 𝑤 ) ) ∈ 𝐶 ) |
| 23 |
22 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐶 ) |
| 24 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐷 ⊆ ℝ ) |
| 25 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ 𝐷 ) |
| 26 |
24 25
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ℝ ) |
| 27 |
26
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ℂ ) |
| 28 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝐷 ) |
| 29 |
24 28
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 30 |
29
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 31 |
27 30
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
| 32 |
|
2re |
⊢ 2 ∈ ℝ |
| 33 |
|
pire |
⊢ π ∈ ℝ |
| 34 |
32 33
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
| 35 |
34
|
recni |
⊢ ( 2 · π ) ∈ ℂ |
| 36 |
|
2pos |
⊢ 0 < 2 |
| 37 |
|
pipos |
⊢ 0 < π |
| 38 |
32 33 36 37
|
mulgt0ii |
⊢ 0 < ( 2 · π ) |
| 39 |
34 38
|
gt0ne0ii |
⊢ ( 2 · π ) ≠ 0 |
| 40 |
|
divcl |
⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℂ ) |
| 41 |
35 39 40
|
mp3an23 |
⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℂ ) |
| 42 |
31 41
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℂ ) |
| 43 |
|
absdiv |
⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) ) |
| 44 |
35 39 43
|
mp3an23 |
⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) ) |
| 45 |
31 44
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) ) |
| 46 |
|
0re |
⊢ 0 ∈ ℝ |
| 47 |
46 34 38
|
ltleii |
⊢ 0 ≤ ( 2 · π ) |
| 48 |
|
absid |
⊢ ( ( ( 2 · π ) ∈ ℝ ∧ 0 ≤ ( 2 · π ) ) → ( abs ‘ ( 2 · π ) ) = ( 2 · π ) ) |
| 49 |
34 47 48
|
mp2an |
⊢ ( abs ‘ ( 2 · π ) ) = ( 2 · π ) |
| 50 |
49
|
oveq2i |
⊢ ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) |
| 51 |
45 50
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) ) |
| 52 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
| 53 |
35
|
mulridi |
⊢ ( ( 2 · π ) · 1 ) = ( 2 · π ) |
| 54 |
52 53
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) |
| 55 |
31
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ ) |
| 56 |
|
1re |
⊢ 1 ∈ ℝ |
| 57 |
34 38
|
pm3.2i |
⊢ ( ( 2 · π ) ∈ ℝ ∧ 0 < ( 2 · π ) ) |
| 58 |
|
ltdivmul |
⊢ ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 2 · π ) ∈ ℝ ∧ 0 < ( 2 · π ) ) ) → ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ↔ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) ) |
| 59 |
56 57 58
|
mp3an23 |
⊢ ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ → ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ↔ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) ) |
| 60 |
55 59
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ↔ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) ) |
| 61 |
54 60
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ) |
| 62 |
51 61
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) < 1 ) |
| 63 |
35 39
|
pm3.2i |
⊢ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) |
| 64 |
|
ine0 |
⊢ i ≠ 0 |
| 65 |
8 64
|
pm3.2i |
⊢ ( i ∈ ℂ ∧ i ≠ 0 ) |
| 66 |
|
divcan5 |
⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) |
| 67 |
63 65 66
|
mp3an23 |
⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) |
| 68 |
31 67
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) |
| 69 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → i ∈ ℂ ) |
| 70 |
69 27 30
|
subdid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · ( 𝑥 − 𝑦 ) ) = ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) |
| 71 |
70
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = ( exp ‘ ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) ) |
| 72 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) |
| 73 |
8 27 72
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · 𝑥 ) ∈ ℂ ) |
| 74 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) ∈ ℂ ) |
| 75 |
8 30 74
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · 𝑦 ) ∈ ℂ ) |
| 76 |
|
efsub |
⊢ ( ( ( i · 𝑥 ) ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · 𝑥 ) ) / ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 77 |
73 75 76
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · 𝑥 ) ) / ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 78 |
|
efcl |
⊢ ( ( i · 𝑦 ) ∈ ℂ → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
| 79 |
75 78
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
| 80 |
|
efne0 |
⊢ ( ( i · 𝑦 ) ∈ ℂ → ( exp ‘ ( i · 𝑦 ) ) ≠ 0 ) |
| 81 |
75 80
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · 𝑦 ) ) ≠ 0 ) |
| 82 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 83 |
|
oveq2 |
⊢ ( 𝑤 = 𝑥 → ( i · 𝑤 ) = ( i · 𝑥 ) ) |
| 84 |
83
|
fveq2d |
⊢ ( 𝑤 = 𝑥 → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · 𝑥 ) ) ) |
| 85 |
|
fvex |
⊢ ( exp ‘ ( i · 𝑥 ) ) ∈ V |
| 86 |
84 1 85
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝐹 ‘ 𝑥 ) = ( exp ‘ ( i · 𝑥 ) ) ) |
| 87 |
25 86
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) = ( exp ‘ ( i · 𝑥 ) ) ) |
| 88 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( i · 𝑤 ) = ( i · 𝑦 ) ) |
| 89 |
88
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 90 |
|
fvex |
⊢ ( exp ‘ ( i · 𝑦 ) ) ∈ V |
| 91 |
89 1 90
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐷 → ( 𝐹 ‘ 𝑦 ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 92 |
28 91
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 93 |
82 87 92
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 94 |
79 81 93
|
diveq1bd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( exp ‘ ( i · 𝑥 ) ) / ( exp ‘ ( i · 𝑦 ) ) ) = 1 ) |
| 95 |
71 77 94
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = 1 ) |
| 96 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝑥 − 𝑦 ) ∈ ℂ ) → ( i · ( 𝑥 − 𝑦 ) ) ∈ ℂ ) |
| 97 |
8 31 96
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · ( 𝑥 − 𝑦 ) ) ∈ ℂ ) |
| 98 |
|
efeq1 |
⊢ ( ( i · ( 𝑥 − 𝑦 ) ) ∈ ℂ → ( ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = 1 ↔ ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 99 |
97 98
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = 1 ↔ ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 100 |
95 99
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) |
| 101 |
68 100
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 102 |
|
nn0abscl |
⊢ ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) ∈ ℕ0 ) |
| 103 |
101 102
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) ∈ ℕ0 ) |
| 104 |
|
nn0lt10b |
⊢ ( ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) ∈ ℕ0 → ( ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) < 1 ↔ ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = 0 ) ) |
| 105 |
103 104
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) < 1 ↔ ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = 0 ) ) |
| 106 |
62 105
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = 0 ) |
| 107 |
42 106
|
abs00d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ) |
| 108 |
|
diveq0 |
⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) → ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
| 109 |
35 39 108
|
mp3an23 |
⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
| 110 |
31 109
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
| 111 |
107 110
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 − 𝑦 ) = 0 ) |
| 112 |
27 30 111
|
subeq0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 113 |
112
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 114 |
113
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 115 |
|
dff13 |
⊢ ( 𝐹 : 𝐷 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐷 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 116 |
23 114 115
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1→ 𝐶 ) |
| 117 |
|
oveq1 |
⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( 𝑧 − 𝑦 ) = ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) |
| 118 |
117
|
oveq1d |
⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
| 119 |
118
|
eleq1d |
⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ↔ ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) ) |
| 120 |
119
|
rexbidv |
⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ↔ ∃ 𝑦 ∈ 𝐷 ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) ) |
| 121 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∀ 𝑧 ∈ ℝ ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 123 |
|
neghalfpire |
⊢ - ( π / 2 ) ∈ ℝ |
| 124 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 125 |
|
iccssre |
⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ ) |
| 126 |
123 124 125
|
mp2an |
⊢ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ |
| 127 |
1 2
|
efif1olem3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ) |
| 128 |
|
resinf1o |
⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |
| 129 |
|
f1oeq1 |
⊢ ( 𝑆 = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) ) |
| 130 |
6 129
|
ax-mp |
⊢ ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) |
| 131 |
128 130
|
mpbir |
⊢ 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |
| 132 |
|
f1ocnv |
⊢ ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) → ◡ 𝑆 : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 133 |
|
f1of |
⊢ ( ◡ 𝑆 : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) → ◡ 𝑆 : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 134 |
131 132 133
|
mp2b |
⊢ ◡ 𝑆 : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) |
| 135 |
134
|
ffvelcdmi |
⊢ ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 136 |
127 135
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 137 |
126 136
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 138 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 139 |
32 137 138
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 140 |
120 122 139
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐷 ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 141 |
|
oveq1 |
⊢ ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) = ( 1 · ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 142 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → i ∈ ℂ ) |
| 143 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 144 |
143
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 145 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝐷 ⊆ ℝ ) |
| 146 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) |
| 147 |
145 146
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ℝ ) |
| 148 |
147
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ℂ ) |
| 149 |
142 144 148
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) = ( ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) − ( i · 𝑦 ) ) ) |
| 150 |
149
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) = ( ( ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) − ( i · 𝑦 ) ) + ( i · 𝑦 ) ) ) |
| 151 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ∈ ℂ ) |
| 152 |
8 144 151
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ∈ ℂ ) |
| 153 |
8 148 74
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · 𝑦 ) ∈ ℂ ) |
| 154 |
152 153
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) − ( i · 𝑦 ) ) + ( i · 𝑦 ) ) = ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
| 155 |
150 154
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) = ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
| 156 |
155
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) ) = ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
| 157 |
144 148
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ ) |
| 158 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ ) → ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ ) |
| 159 |
8 157 158
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ ) |
| 160 |
|
efadd |
⊢ ( ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ) → ( exp ‘ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 161 |
159 153 160
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 162 |
|
2cn |
⊢ 2 ∈ ℂ |
| 163 |
137
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 164 |
|
mul12 |
⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℂ ∧ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
| 165 |
8 162 163 164
|
mp3an12i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
| 166 |
165
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( exp ‘ ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
| 167 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ ) → ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 168 |
8 163 167
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 169 |
|
2z |
⊢ 2 ∈ ℤ |
| 170 |
|
efexp |
⊢ ( ( ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ∧ 2 ∈ ℤ ) → ( exp ‘ ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) ) |
| 171 |
168 169 170
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) ) |
| 172 |
166 171
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) ) |
| 173 |
137
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 174 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) |
| 175 |
174 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ◡ abs “ { 1 } ) ) |
| 176 |
|
fniniseg |
⊢ ( abs Fn ℂ → ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) ) |
| 177 |
17 176
|
ax-mp |
⊢ ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
| 178 |
175 177
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
| 179 |
178
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ℂ ) |
| 180 |
179
|
sqrtcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( √ ‘ 𝑥 ) ∈ ℂ ) |
| 181 |
180
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℜ ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
| 182 |
|
cosq14ge0 |
⊢ ( ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 183 |
136 182
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 0 ≤ ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 184 |
179
|
sqrtrege0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 0 ≤ ( ℜ ‘ ( √ ‘ 𝑥 ) ) ) |
| 185 |
|
sincossq |
⊢ ( ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ → ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = 1 ) |
| 186 |
163 185
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = 1 ) |
| 187 |
179
|
sqsqrtd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( √ ‘ 𝑥 ) ↑ 2 ) = 𝑥 ) |
| 188 |
187
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( abs ‘ 𝑥 ) ) |
| 189 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 190 |
|
absexp |
⊢ ( ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 191 |
180 189 190
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 192 |
178
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ 𝑥 ) = 1 ) |
| 193 |
188 191 192
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = 1 ) |
| 194 |
180
|
absvalsq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 195 |
186 193 194
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 196 |
6
|
fveq1i |
⊢ ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) |
| 197 |
136
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 198 |
196 197
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 199 |
|
f1ocnvfv2 |
⊢ ( ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ) → ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
| 200 |
131 127 199
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
| 201 |
198 200
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
| 202 |
201
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) = ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 203 |
195 202
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) − ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = ( ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) − ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 204 |
163
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 205 |
204
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ∈ ℂ ) |
| 206 |
163
|
coscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 207 |
206
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ∈ ℂ ) |
| 208 |
205 207
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) − ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) |
| 209 |
181
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℜ ‘ ( √ ‘ 𝑥 ) ) ∈ ℂ ) |
| 210 |
209
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ∈ ℂ ) |
| 211 |
202 205
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ∈ ℂ ) |
| 212 |
210 211
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) − ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 213 |
203 208 212
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 214 |
173 181 183 184 213
|
sq11d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℜ ‘ ( √ ‘ 𝑥 ) ) ) |
| 215 |
201
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( i · ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) |
| 216 |
214 215
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) + ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 217 |
|
efival |
⊢ ( ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ → ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) + ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
| 218 |
163 217
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) + ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
| 219 |
180
|
replimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( √ ‘ 𝑥 ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 220 |
216 218 219
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( √ ‘ 𝑥 ) ) |
| 221 |
220
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) = ( ( √ ‘ 𝑥 ) ↑ 2 ) ) |
| 222 |
172 221 187
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = 𝑥 ) |
| 223 |
222
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = 𝑥 ) |
| 224 |
156 161 223
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) = 𝑥 ) |
| 225 |
153 78
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
| 226 |
225
|
mullidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 1 · ( exp ‘ ( i · 𝑦 ) ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 227 |
224 226
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) = ( 1 · ( exp ‘ ( i · 𝑦 ) ) ) ↔ 𝑥 = ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 228 |
141 227
|
imbitrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 → 𝑥 = ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 229 |
|
efeq1 |
⊢ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 ↔ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 230 |
159 229
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 ↔ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 231 |
|
divcan5 |
⊢ ( ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ ∧ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
| 232 |
63 65 231
|
mp3an23 |
⊢ ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
| 233 |
157 232
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
| 234 |
233
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ↔ ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) ) |
| 235 |
230 234
|
bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ↔ ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 ) ) |
| 236 |
91
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 237 |
236
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 238 |
228 235 237
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ → 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
| 239 |
238
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ∃ 𝑦 ∈ 𝐷 ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ → ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
| 240 |
140 239
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
| 241 |
240
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
| 242 |
|
dffo3 |
⊢ ( 𝐹 : 𝐷 –onto→ 𝐶 ↔ ( 𝐹 : 𝐷 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
| 243 |
23 241 242
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐷 –onto→ 𝐶 ) |
| 244 |
|
df-f1o |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐷 –1-1→ 𝐶 ∧ 𝐹 : 𝐷 –onto→ 𝐶 ) ) |
| 245 |
116 243 244
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1-onto→ 𝐶 ) |