| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efif1o.1 |
⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) |
| 2 |
|
efif1o.2 |
⊢ 𝐶 = ( ◡ abs “ { 1 } ) |
| 3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) |
| 4 |
3 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ◡ abs “ { 1 } ) ) |
| 5 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 6 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 7 |
|
fniniseg |
⊢ ( abs Fn ℂ → ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) ) |
| 8 |
5 6 7
|
mp2b |
⊢ ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
| 9 |
4 8
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
| 10 |
9
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ℂ ) |
| 11 |
10
|
sqrtcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( √ ‘ 𝑥 ) ∈ ℂ ) |
| 12 |
11
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
| 13 |
|
absimle |
⊢ ( ( √ ‘ 𝑥 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) |
| 14 |
11 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) |
| 15 |
10
|
sqsqrtd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( √ ‘ 𝑥 ) ↑ 2 ) = 𝑥 ) |
| 16 |
15
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( abs ‘ 𝑥 ) ) |
| 17 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 18 |
|
absexp |
⊢ ( ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 19 |
11 17 18
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 20 |
9
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ 𝑥 ) = 1 ) |
| 21 |
16 19 20
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = 1 ) |
| 22 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 23 |
21 22
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 24 |
11
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
| 25 |
11
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 0 ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) |
| 26 |
|
1re |
⊢ 1 ∈ ℝ |
| 27 |
|
0le1 |
⊢ 0 ≤ 1 |
| 28 |
|
sq11 |
⊢ ( ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( abs ‘ ( √ ‘ 𝑥 ) ) = 1 ) ) |
| 29 |
26 27 28
|
mpanr12 |
⊢ ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) → ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( abs ‘ ( √ ‘ 𝑥 ) ) = 1 ) ) |
| 30 |
24 25 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( abs ‘ ( √ ‘ 𝑥 ) ) = 1 ) ) |
| 31 |
23 30
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( √ ‘ 𝑥 ) ) = 1 ) |
| 32 |
14 31
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ 1 ) |
| 33 |
|
absle |
⊢ ( ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ 1 ↔ ( - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) ) ) |
| 34 |
12 26 33
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ 1 ↔ ( - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) ) ) |
| 35 |
32 34
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) ) |
| 36 |
35
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
| 37 |
35
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) |
| 38 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 39 |
38 26
|
elicc2i |
⊢ ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ↔ ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ∧ - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) ) |
| 40 |
12 36 37 39
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ) |