| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efif1o.1 |  | 
						
							| 2 |  | efif1o.2 |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 | 3 2 | eleqtrdi |  | 
						
							| 5 |  | absf |  | 
						
							| 6 |  | ffn |  | 
						
							| 7 |  | fniniseg |  | 
						
							| 8 | 5 6 7 | mp2b |  | 
						
							| 9 | 4 8 | sylib |  | 
						
							| 10 | 9 | simpld |  | 
						
							| 11 | 10 | sqrtcld |  | 
						
							| 12 | 11 | imcld |  | 
						
							| 13 |  | absimle |  | 
						
							| 14 | 11 13 | syl |  | 
						
							| 15 | 10 | sqsqrtd |  | 
						
							| 16 | 15 | fveq2d |  | 
						
							| 17 |  | 2nn0 |  | 
						
							| 18 |  | absexp |  | 
						
							| 19 | 11 17 18 | sylancl |  | 
						
							| 20 | 9 | simprd |  | 
						
							| 21 | 16 19 20 | 3eqtr3d |  | 
						
							| 22 |  | sq1 |  | 
						
							| 23 | 21 22 | eqtr4di |  | 
						
							| 24 | 11 | abscld |  | 
						
							| 25 | 11 | absge0d |  | 
						
							| 26 |  | 1re |  | 
						
							| 27 |  | 0le1 |  | 
						
							| 28 |  | sq11 |  | 
						
							| 29 | 26 27 28 | mpanr12 |  | 
						
							| 30 | 24 25 29 | syl2anc |  | 
						
							| 31 | 23 30 | mpbid |  | 
						
							| 32 | 14 31 | breqtrd |  | 
						
							| 33 |  | absle |  | 
						
							| 34 | 12 26 33 | sylancl |  | 
						
							| 35 | 32 34 | mpbid |  | 
						
							| 36 | 35 | simpld |  | 
						
							| 37 | 35 | simprd |  | 
						
							| 38 |  | neg1rr |  | 
						
							| 39 | 38 26 | elicc2i |  | 
						
							| 40 | 12 36 37 39 | syl3anbrc |  |