Metamath Proof Explorer


Theorem clsf2

Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf . (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses clselmap.x
|- X = U. J
clselmap.k
|- K = ( cls ` J )
Assertion clsf2
|- ( J e. Top -> K : ~P X --> ~P X )

Proof

Step Hyp Ref Expression
1 clselmap.x
 |-  X = U. J
2 clselmap.k
 |-  K = ( cls ` J )
3 1 clsf
 |-  ( J e. Top -> ( cls ` J ) : ~P X --> ( Clsd ` J ) )
4 2 feq1i
 |-  ( K : ~P X --> ( Clsd ` J ) <-> ( cls ` J ) : ~P X --> ( Clsd ` J ) )
5 df-f
 |-  ( K : ~P X --> ( Clsd ` J ) <-> ( K Fn ~P X /\ ran K C_ ( Clsd ` J ) ) )
6 4 5 sylbb1
 |-  ( ( cls ` J ) : ~P X --> ( Clsd ` J ) -> ( K Fn ~P X /\ ran K C_ ( Clsd ` J ) ) )
7 1 cldss2
 |-  ( Clsd ` J ) C_ ~P X
8 sstr2
 |-  ( ran K C_ ( Clsd ` J ) -> ( ( Clsd ` J ) C_ ~P X -> ran K C_ ~P X ) )
9 7 8 mpi
 |-  ( ran K C_ ( Clsd ` J ) -> ran K C_ ~P X )
10 9 anim2i
 |-  ( ( K Fn ~P X /\ ran K C_ ( Clsd ` J ) ) -> ( K Fn ~P X /\ ran K C_ ~P X ) )
11 3 6 10 3syl
 |-  ( J e. Top -> ( K Fn ~P X /\ ran K C_ ~P X ) )
12 df-f
 |-  ( K : ~P X --> ~P X <-> ( K Fn ~P X /\ ran K C_ ~P X ) )
13 11 12 sylibr
 |-  ( J e. Top -> K : ~P X --> ~P X )