Step |
Hyp |
Ref |
Expression |
1 |
|
clselmap.x |
|- X = U. J |
2 |
|
clselmap.k |
|- K = ( cls ` J ) |
3 |
1
|
clsf |
|- ( J e. Top -> ( cls ` J ) : ~P X --> ( Clsd ` J ) ) |
4 |
2
|
feq1i |
|- ( K : ~P X --> ( Clsd ` J ) <-> ( cls ` J ) : ~P X --> ( Clsd ` J ) ) |
5 |
|
df-f |
|- ( K : ~P X --> ( Clsd ` J ) <-> ( K Fn ~P X /\ ran K C_ ( Clsd ` J ) ) ) |
6 |
4 5
|
sylbb1 |
|- ( ( cls ` J ) : ~P X --> ( Clsd ` J ) -> ( K Fn ~P X /\ ran K C_ ( Clsd ` J ) ) ) |
7 |
1
|
cldss2 |
|- ( Clsd ` J ) C_ ~P X |
8 |
|
sstr2 |
|- ( ran K C_ ( Clsd ` J ) -> ( ( Clsd ` J ) C_ ~P X -> ran K C_ ~P X ) ) |
9 |
7 8
|
mpi |
|- ( ran K C_ ( Clsd ` J ) -> ran K C_ ~P X ) |
10 |
9
|
anim2i |
|- ( ( K Fn ~P X /\ ran K C_ ( Clsd ` J ) ) -> ( K Fn ~P X /\ ran K C_ ~P X ) ) |
11 |
3 6 10
|
3syl |
|- ( J e. Top -> ( K Fn ~P X /\ ran K C_ ~P X ) ) |
12 |
|
df-f |
|- ( K : ~P X --> ~P X <-> ( K Fn ~P X /\ ran K C_ ~P X ) ) |
13 |
11 12
|
sylibr |
|- ( J e. Top -> K : ~P X --> ~P X ) |