Metamath Proof Explorer


Theorem clsf2

Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf . (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses clselmap.x 𝑋 = 𝐽
clselmap.k 𝐾 = ( cls ‘ 𝐽 )
Assertion clsf2 ( 𝐽 ∈ Top → 𝐾 : 𝒫 𝑋 ⟶ 𝒫 𝑋 )

Proof

Step Hyp Ref Expression
1 clselmap.x 𝑋 = 𝐽
2 clselmap.k 𝐾 = ( cls ‘ 𝐽 )
3 1 clsf ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) )
4 2 feq1i ( 𝐾 : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) ↔ ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) )
5 df-f ( 𝐾 : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) ↔ ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) ) )
6 4 5 sylbb1 ( ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) → ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) ) )
7 1 cldss2 ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋
8 sstr2 ( ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) → ( ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋 → ran 𝐾 ⊆ 𝒫 𝑋 ) )
9 7 8 mpi ( ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) → ran 𝐾 ⊆ 𝒫 𝑋 )
10 9 anim2i ( ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) ) → ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋 ) )
11 3 6 10 3syl ( 𝐽 ∈ Top → ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋 ) )
12 df-f ( 𝐾 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ↔ ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋 ) )
13 11 12 sylibr ( 𝐽 ∈ Top → 𝐾 : 𝒫 𝑋 ⟶ 𝒫 𝑋 )