Step |
Hyp |
Ref |
Expression |
1 |
|
clselmap.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
clselmap.k |
⊢ 𝐾 = ( cls ‘ 𝐽 ) |
3 |
1
|
clsf |
⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) ) |
4 |
2
|
feq1i |
⊢ ( 𝐾 : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) ↔ ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) ) |
5 |
|
df-f |
⊢ ( 𝐾 : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) ↔ ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) ) ) |
6 |
4 5
|
sylbb1 |
⊢ ( ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) → ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) ) ) |
7 |
1
|
cldss2 |
⊢ ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋 |
8 |
|
sstr2 |
⊢ ( ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) → ( ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋 → ran 𝐾 ⊆ 𝒫 𝑋 ) ) |
9 |
7 8
|
mpi |
⊢ ( ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) → ran 𝐾 ⊆ 𝒫 𝑋 ) |
10 |
9
|
anim2i |
⊢ ( ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ ( Clsd ‘ 𝐽 ) ) → ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋 ) ) |
11 |
3 6 10
|
3syl |
⊢ ( 𝐽 ∈ Top → ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋 ) ) |
12 |
|
df-f |
⊢ ( 𝐾 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ↔ ( 𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋 ) ) |
13 |
11 12
|
sylibr |
⊢ ( 𝐽 ∈ Top → 𝐾 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) |