Metamath Proof Explorer


Theorem clsf

Description: The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion clsf ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 elpwi ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
3 1 clsval ( ( 𝐽 ∈ Top ∧ 𝑥𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥𝑦 } )
4 fvex ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ V
5 3 4 eqeltrrdi ( ( 𝐽 ∈ Top ∧ 𝑥𝑋 ) → { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥𝑦 } ∈ V )
6 2 5 sylan2 ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 𝑋 ) → { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥𝑦 } ∈ V )
7 1 clsfval ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥𝑦 } ) )
8 elpwi ( 𝑦 ∈ 𝒫 𝑋𝑦𝑋 )
9 1 clscld ( ( 𝐽 ∈ Top ∧ 𝑦𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) )
10 8 9 sylan2 ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) )
11 6 7 10 fmpt2d ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) )