| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝑋  →  𝑥  ⊆  𝑋 ) | 
						
							| 3 | 1 | clsval | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  =  ∩  { 𝑦  ∈  ( Clsd ‘ 𝐽 )  ∣  𝑥  ⊆  𝑦 } ) | 
						
							| 4 |  | fvex | ⊢ ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ∈  V | 
						
							| 5 | 3 4 | eqeltrrdi | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ⊆  𝑋 )  →  ∩  { 𝑦  ∈  ( Clsd ‘ 𝐽 )  ∣  𝑥  ⊆  𝑦 }  ∈  V ) | 
						
							| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝒫  𝑋 )  →  ∩  { 𝑦  ∈  ( Clsd ‘ 𝐽 )  ∣  𝑥  ⊆  𝑦 }  ∈  V ) | 
						
							| 7 | 1 | clsfval | ⊢ ( 𝐽  ∈  Top  →  ( cls ‘ 𝐽 )  =  ( 𝑥  ∈  𝒫  𝑋  ↦  ∩  { 𝑦  ∈  ( Clsd ‘ 𝐽 )  ∣  𝑥  ⊆  𝑦 } ) ) | 
						
							| 8 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝑋  →  𝑦  ⊆  𝑋 ) | 
						
							| 9 | 1 | clscld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑦  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 11 | 6 7 10 | fmpt2d | ⊢ ( 𝐽  ∈  Top  →  ( cls ‘ 𝐽 ) : 𝒫  𝑋 ⟶ ( Clsd ‘ 𝐽 ) ) |