Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
3 |
1
|
clsval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) |
4 |
|
fvex |
⊢ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ V |
5 |
3 4
|
eqeltrrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ∈ V ) |
6 |
2 5
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 𝑋 ) → ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ∈ V ) |
7 |
1
|
clsfval |
⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) ) |
8 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) |
9 |
1
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
11 |
6 7 10
|
fmpt2d |
⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) ) |