Step |
Hyp |
Ref |
Expression |
1 |
|
clsnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
2 |
|
clsnei.p |
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
3 |
|
clsnei.d |
|- D = ( P ` B ) |
4 |
|
clsnei.f |
|- F = ( ~P B O B ) |
5 |
|
clsnei.h |
|- H = ( F o. D ) |
6 |
|
clsnei.r |
|- ( ph -> K H N ) |
7 |
|
clsneifv.s |
|- ( ph -> S e. ~P B ) |
8 |
|
dfin5 |
|- ( B i^i ( K ` S ) ) = { x e. B | x e. ( K ` S ) } |
9 |
1 2 3 4 5 6
|
clsneikex |
|- ( ph -> K e. ( ~P B ^m ~P B ) ) |
10 |
|
elmapi |
|- ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B ) |
11 |
9 10
|
syl |
|- ( ph -> K : ~P B --> ~P B ) |
12 |
11 7
|
ffvelrnd |
|- ( ph -> ( K ` S ) e. ~P B ) |
13 |
12
|
elpwid |
|- ( ph -> ( K ` S ) C_ B ) |
14 |
|
sseqin2 |
|- ( ( K ` S ) C_ B <-> ( B i^i ( K ` S ) ) = ( K ` S ) ) |
15 |
13 14
|
sylib |
|- ( ph -> ( B i^i ( K ` S ) ) = ( K ` S ) ) |
16 |
6
|
adantr |
|- ( ( ph /\ x e. B ) -> K H N ) |
17 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
18 |
7
|
adantr |
|- ( ( ph /\ x e. B ) -> S e. ~P B ) |
19 |
1 2 3 4 5 16 17 18
|
clsneiel1 |
|- ( ( ph /\ x e. B ) -> ( x e. ( K ` S ) <-> -. ( B \ S ) e. ( N ` x ) ) ) |
20 |
19
|
rabbidva |
|- ( ph -> { x e. B | x e. ( K ` S ) } = { x e. B | -. ( B \ S ) e. ( N ` x ) } ) |
21 |
8 15 20
|
3eqtr3a |
|- ( ph -> ( K ` S ) = { x e. B | -. ( B \ S ) e. ( N ` x ) } ) |