| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | clsnei.p |  |-  P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) | 
						
							| 3 |  | clsnei.d |  |-  D = ( P ` B ) | 
						
							| 4 |  | clsnei.f |  |-  F = ( ~P B O B ) | 
						
							| 5 |  | clsnei.h |  |-  H = ( F o. D ) | 
						
							| 6 |  | clsnei.r |  |-  ( ph -> K H N ) | 
						
							| 7 |  | clsneifv.s |  |-  ( ph -> S e. ~P B ) | 
						
							| 8 |  | dfin5 |  |-  ( B i^i ( K ` S ) ) = { x e. B | x e. ( K ` S ) } | 
						
							| 9 | 1 2 3 4 5 6 | clsneikex |  |-  ( ph -> K e. ( ~P B ^m ~P B ) ) | 
						
							| 10 |  | elmapi |  |-  ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> K : ~P B --> ~P B ) | 
						
							| 12 | 11 7 | ffvelcdmd |  |-  ( ph -> ( K ` S ) e. ~P B ) | 
						
							| 13 | 12 | elpwid |  |-  ( ph -> ( K ` S ) C_ B ) | 
						
							| 14 |  | sseqin2 |  |-  ( ( K ` S ) C_ B <-> ( B i^i ( K ` S ) ) = ( K ` S ) ) | 
						
							| 15 | 13 14 | sylib |  |-  ( ph -> ( B i^i ( K ` S ) ) = ( K ` S ) ) | 
						
							| 16 | 6 | adantr |  |-  ( ( ph /\ x e. B ) -> K H N ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 18 | 7 | adantr |  |-  ( ( ph /\ x e. B ) -> S e. ~P B ) | 
						
							| 19 | 1 2 3 4 5 16 17 18 | clsneiel1 |  |-  ( ( ph /\ x e. B ) -> ( x e. ( K ` S ) <-> -. ( B \ S ) e. ( N ` x ) ) ) | 
						
							| 20 | 19 | rabbidva |  |-  ( ph -> { x e. B | x e. ( K ` S ) } = { x e. B | -. ( B \ S ) e. ( N ` x ) } ) | 
						
							| 21 | 8 15 20 | 3eqtr3a |  |-  ( ph -> ( K ` S ) = { x e. B | -. ( B \ S ) e. ( N ` x ) } ) |