Step |
Hyp |
Ref |
Expression |
1 |
|
neicvgbex.d |
|- D = ( P ` B ) |
2 |
|
neicvgbex.h |
|- H = ( F o. ( D o. G ) ) |
3 |
|
neicvgbex.r |
|- ( ph -> N H M ) |
4 |
1
|
coeq1i |
|- ( D o. G ) = ( ( P ` B ) o. G ) |
5 |
4
|
coeq2i |
|- ( F o. ( D o. G ) ) = ( F o. ( ( P ` B ) o. G ) ) |
6 |
2 5
|
eqtri |
|- H = ( F o. ( ( P ` B ) o. G ) ) |
7 |
6
|
a1i |
|- ( ph -> H = ( F o. ( ( P ` B ) o. G ) ) ) |
8 |
7 3
|
breqdi |
|- ( ph -> N ( F o. ( ( P ` B ) o. G ) ) M ) |
9 |
|
brne0 |
|- ( N ( F o. ( ( P ` B ) o. G ) ) M -> ( F o. ( ( P ` B ) o. G ) ) =/= (/) ) |
10 |
|
fvprc |
|- ( -. B e. _V -> ( P ` B ) = (/) ) |
11 |
10
|
dmeqd |
|- ( -. B e. _V -> dom ( P ` B ) = dom (/) ) |
12 |
|
dm0 |
|- dom (/) = (/) |
13 |
11 12
|
eqtrdi |
|- ( -. B e. _V -> dom ( P ` B ) = (/) ) |
14 |
13
|
ineq1d |
|- ( -. B e. _V -> ( dom ( P ` B ) i^i ran G ) = ( (/) i^i ran G ) ) |
15 |
|
0in |
|- ( (/) i^i ran G ) = (/) |
16 |
14 15
|
eqtrdi |
|- ( -. B e. _V -> ( dom ( P ` B ) i^i ran G ) = (/) ) |
17 |
16
|
coemptyd |
|- ( -. B e. _V -> ( ( P ` B ) o. G ) = (/) ) |
18 |
17
|
rneqd |
|- ( -. B e. _V -> ran ( ( P ` B ) o. G ) = ran (/) ) |
19 |
|
rn0 |
|- ran (/) = (/) |
20 |
18 19
|
eqtrdi |
|- ( -. B e. _V -> ran ( ( P ` B ) o. G ) = (/) ) |
21 |
20
|
ineq2d |
|- ( -. B e. _V -> ( dom F i^i ran ( ( P ` B ) o. G ) ) = ( dom F i^i (/) ) ) |
22 |
|
in0 |
|- ( dom F i^i (/) ) = (/) |
23 |
21 22
|
eqtrdi |
|- ( -. B e. _V -> ( dom F i^i ran ( ( P ` B ) o. G ) ) = (/) ) |
24 |
23
|
coemptyd |
|- ( -. B e. _V -> ( F o. ( ( P ` B ) o. G ) ) = (/) ) |
25 |
24
|
necon1ai |
|- ( ( F o. ( ( P ` B ) o. G ) ) =/= (/) -> B e. _V ) |
26 |
8 9 25
|
3syl |
|- ( ph -> B e. _V ) |