Metamath Proof Explorer


Theorem neicvgbex

Description: If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, H , then the base set exists. (Contributed by RP, 4-Jun-2021)

Ref Expression
Hypotheses neicvgbex.d
|- D = ( P ` B )
neicvgbex.h
|- H = ( F o. ( D o. G ) )
neicvgbex.r
|- ( ph -> N H M )
Assertion neicvgbex
|- ( ph -> B e. _V )

Proof

Step Hyp Ref Expression
1 neicvgbex.d
 |-  D = ( P ` B )
2 neicvgbex.h
 |-  H = ( F o. ( D o. G ) )
3 neicvgbex.r
 |-  ( ph -> N H M )
4 1 coeq1i
 |-  ( D o. G ) = ( ( P ` B ) o. G )
5 4 coeq2i
 |-  ( F o. ( D o. G ) ) = ( F o. ( ( P ` B ) o. G ) )
6 2 5 eqtri
 |-  H = ( F o. ( ( P ` B ) o. G ) )
7 6 a1i
 |-  ( ph -> H = ( F o. ( ( P ` B ) o. G ) ) )
8 7 3 breqdi
 |-  ( ph -> N ( F o. ( ( P ` B ) o. G ) ) M )
9 brne0
 |-  ( N ( F o. ( ( P ` B ) o. G ) ) M -> ( F o. ( ( P ` B ) o. G ) ) =/= (/) )
10 fvprc
 |-  ( -. B e. _V -> ( P ` B ) = (/) )
11 10 dmeqd
 |-  ( -. B e. _V -> dom ( P ` B ) = dom (/) )
12 dm0
 |-  dom (/) = (/)
13 11 12 eqtrdi
 |-  ( -. B e. _V -> dom ( P ` B ) = (/) )
14 13 ineq1d
 |-  ( -. B e. _V -> ( dom ( P ` B ) i^i ran G ) = ( (/) i^i ran G ) )
15 0in
 |-  ( (/) i^i ran G ) = (/)
16 14 15 eqtrdi
 |-  ( -. B e. _V -> ( dom ( P ` B ) i^i ran G ) = (/) )
17 16 coemptyd
 |-  ( -. B e. _V -> ( ( P ` B ) o. G ) = (/) )
18 17 rneqd
 |-  ( -. B e. _V -> ran ( ( P ` B ) o. G ) = ran (/) )
19 rn0
 |-  ran (/) = (/)
20 18 19 eqtrdi
 |-  ( -. B e. _V -> ran ( ( P ` B ) o. G ) = (/) )
21 20 ineq2d
 |-  ( -. B e. _V -> ( dom F i^i ran ( ( P ` B ) o. G ) ) = ( dom F i^i (/) ) )
22 in0
 |-  ( dom F i^i (/) ) = (/)
23 21 22 eqtrdi
 |-  ( -. B e. _V -> ( dom F i^i ran ( ( P ` B ) o. G ) ) = (/) )
24 23 coemptyd
 |-  ( -. B e. _V -> ( F o. ( ( P ` B ) o. G ) ) = (/) )
25 24 necon1ai
 |-  ( ( F o. ( ( P ` B ) o. G ) ) =/= (/) -> B e. _V )
26 8 9 25 3syl
 |-  ( ph -> B e. _V )