Metamath Proof Explorer


Theorem neicvgrcomplex

Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses neicvgbex.d
|- D = ( P ` B )
neicvgbex.h
|- H = ( F o. ( D o. G ) )
neicvgbex.r
|- ( ph -> N H M )
Assertion neicvgrcomplex
|- ( ph -> ( B \ S ) e. ~P B )

Proof

Step Hyp Ref Expression
1 neicvgbex.d
 |-  D = ( P ` B )
2 neicvgbex.h
 |-  H = ( F o. ( D o. G ) )
3 neicvgbex.r
 |-  ( ph -> N H M )
4 1 2 3 neicvgbex
 |-  ( ph -> B e. _V )
5 difssd
 |-  ( ph -> ( B \ S ) C_ B )
6 4 5 sselpwd
 |-  ( ph -> ( B \ S ) e. ~P B )