Metamath Proof Explorer


Theorem neicvgrcomplex

Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses neicvgbex.d 𝐷 = ( 𝑃𝐵 )
neicvgbex.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
neicvgbex.r ( 𝜑𝑁 𝐻 𝑀 )
Assertion neicvgrcomplex ( 𝜑 → ( 𝐵𝑆 ) ∈ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 neicvgbex.d 𝐷 = ( 𝑃𝐵 )
2 neicvgbex.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
3 neicvgbex.r ( 𝜑𝑁 𝐻 𝑀 )
4 1 2 3 neicvgbex ( 𝜑𝐵 ∈ V )
5 difssd ( 𝜑 → ( 𝐵𝑆 ) ⊆ 𝐵 )
6 4 5 sselpwd ( 𝜑 → ( 𝐵𝑆 ) ∈ 𝒫 𝐵 )