Metamath Proof Explorer


Theorem clsneifv4

Description: Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses clsnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
clsnei.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
clsnei.d 𝐷 = ( 𝑃𝐵 )
clsnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
clsnei.h 𝐻 = ( 𝐹𝐷 )
clsnei.r ( 𝜑𝐾 𝐻 𝑁 )
clsneifv.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
Assertion clsneifv4 ( 𝜑 → ( 𝐾𝑆 ) = { 𝑥𝐵 ∣ ¬ ( 𝐵𝑆 ) ∈ ( 𝑁𝑥 ) } )

Proof

Step Hyp Ref Expression
1 clsnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 clsnei.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
3 clsnei.d 𝐷 = ( 𝑃𝐵 )
4 clsnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
5 clsnei.h 𝐻 = ( 𝐹𝐷 )
6 clsnei.r ( 𝜑𝐾 𝐻 𝑁 )
7 clsneifv.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
8 dfin5 ( 𝐵 ∩ ( 𝐾𝑆 ) ) = { 𝑥𝐵𝑥 ∈ ( 𝐾𝑆 ) }
9 1 2 3 4 5 6 clsneikex ( 𝜑𝐾 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
10 elmapi ( 𝐾 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐾 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
11 9 10 syl ( 𝜑𝐾 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
12 11 7 ffvelrnd ( 𝜑 → ( 𝐾𝑆 ) ∈ 𝒫 𝐵 )
13 12 elpwid ( 𝜑 → ( 𝐾𝑆 ) ⊆ 𝐵 )
14 sseqin2 ( ( 𝐾𝑆 ) ⊆ 𝐵 ↔ ( 𝐵 ∩ ( 𝐾𝑆 ) ) = ( 𝐾𝑆 ) )
15 13 14 sylib ( 𝜑 → ( 𝐵 ∩ ( 𝐾𝑆 ) ) = ( 𝐾𝑆 ) )
16 6 adantr ( ( 𝜑𝑥𝐵 ) → 𝐾 𝐻 𝑁 )
17 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
18 7 adantr ( ( 𝜑𝑥𝐵 ) → 𝑆 ∈ 𝒫 𝐵 )
19 1 2 3 4 5 16 17 18 clsneiel1 ( ( 𝜑𝑥𝐵 ) → ( 𝑥 ∈ ( 𝐾𝑆 ) ↔ ¬ ( 𝐵𝑆 ) ∈ ( 𝑁𝑥 ) ) )
20 19 rabbidva ( 𝜑 → { 𝑥𝐵𝑥 ∈ ( 𝐾𝑆 ) } = { 𝑥𝐵 ∣ ¬ ( 𝐵𝑆 ) ∈ ( 𝑁𝑥 ) } )
21 8 15 20 3eqtr3a ( 𝜑 → ( 𝐾𝑆 ) = { 𝑥𝐵 ∣ ¬ ( 𝐵𝑆 ) ∈ ( 𝑁𝑥 ) } )