Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clsneibex.d | |- D = ( P ` B ) |
|
| clsneibex.h | |- H = ( F o. D ) |
||
| clsneibex.r | |- ( ph -> K H N ) |
||
| Assertion | clsneircomplex | |- ( ph -> ( B \ S ) e. ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clsneibex.d | |- D = ( P ` B ) |
|
| 2 | clsneibex.h | |- H = ( F o. D ) |
|
| 3 | clsneibex.r | |- ( ph -> K H N ) |
|
| 4 | 1 2 3 | clsneibex | |- ( ph -> B e. _V ) |
| 5 | difssd | |- ( ph -> ( B \ S ) C_ B ) |
|
| 6 | 4 5 | sselpwd | |- ( ph -> ( B \ S ) e. ~P B ) |