Metamath Proof Explorer


Theorem clsneircomplex

Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses clsneibex.d
|- D = ( P ` B )
clsneibex.h
|- H = ( F o. D )
clsneibex.r
|- ( ph -> K H N )
Assertion clsneircomplex
|- ( ph -> ( B \ S ) e. ~P B )

Proof

Step Hyp Ref Expression
1 clsneibex.d
 |-  D = ( P ` B )
2 clsneibex.h
 |-  H = ( F o. D )
3 clsneibex.r
 |-  ( ph -> K H N )
4 1 2 3 clsneibex
 |-  ( ph -> B e. _V )
5 difssd
 |-  ( ph -> ( B \ S ) C_ B )
6 4 5 sselpwd
 |-  ( ph -> ( B \ S ) e. ~P B )