| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsneibex.d |  |-  D = ( P ` B ) | 
						
							| 2 |  | clsneibex.h |  |-  H = ( F o. D ) | 
						
							| 3 |  | clsneibex.r |  |-  ( ph -> K H N ) | 
						
							| 4 | 1 | coeq2i |  |-  ( F o. D ) = ( F o. ( P ` B ) ) | 
						
							| 5 | 2 4 | eqtri |  |-  H = ( F o. ( P ` B ) ) | 
						
							| 6 | 5 | a1i |  |-  ( ph -> H = ( F o. ( P ` B ) ) ) | 
						
							| 7 | 6 3 | breqdi |  |-  ( ph -> K ( F o. ( P ` B ) ) N ) | 
						
							| 8 |  | brne0 |  |-  ( K ( F o. ( P ` B ) ) N -> ( F o. ( P ` B ) ) =/= (/) ) | 
						
							| 9 |  | fvprc |  |-  ( -. B e. _V -> ( P ` B ) = (/) ) | 
						
							| 10 | 9 | rneqd |  |-  ( -. B e. _V -> ran ( P ` B ) = ran (/) ) | 
						
							| 11 |  | rn0 |  |-  ran (/) = (/) | 
						
							| 12 | 10 11 | eqtrdi |  |-  ( -. B e. _V -> ran ( P ` B ) = (/) ) | 
						
							| 13 | 12 | ineq2d |  |-  ( -. B e. _V -> ( dom F i^i ran ( P ` B ) ) = ( dom F i^i (/) ) ) | 
						
							| 14 |  | in0 |  |-  ( dom F i^i (/) ) = (/) | 
						
							| 15 | 13 14 | eqtrdi |  |-  ( -. B e. _V -> ( dom F i^i ran ( P ` B ) ) = (/) ) | 
						
							| 16 | 15 | coemptyd |  |-  ( -. B e. _V -> ( F o. ( P ` B ) ) = (/) ) | 
						
							| 17 | 16 | necon1ai |  |-  ( ( F o. ( P ` B ) ) =/= (/) -> B e. _V ) | 
						
							| 18 | 7 8 17 | 3syl |  |-  ( ph -> B e. _V ) |