Step |
Hyp |
Ref |
Expression |
1 |
|
clsneibex.d |
|- D = ( P ` B ) |
2 |
|
clsneibex.h |
|- H = ( F o. D ) |
3 |
|
clsneibex.r |
|- ( ph -> K H N ) |
4 |
1
|
coeq2i |
|- ( F o. D ) = ( F o. ( P ` B ) ) |
5 |
2 4
|
eqtri |
|- H = ( F o. ( P ` B ) ) |
6 |
5
|
a1i |
|- ( ph -> H = ( F o. ( P ` B ) ) ) |
7 |
6 3
|
breqdi |
|- ( ph -> K ( F o. ( P ` B ) ) N ) |
8 |
|
brne0 |
|- ( K ( F o. ( P ` B ) ) N -> ( F o. ( P ` B ) ) =/= (/) ) |
9 |
|
fvprc |
|- ( -. B e. _V -> ( P ` B ) = (/) ) |
10 |
9
|
rneqd |
|- ( -. B e. _V -> ran ( P ` B ) = ran (/) ) |
11 |
|
rn0 |
|- ran (/) = (/) |
12 |
10 11
|
eqtrdi |
|- ( -. B e. _V -> ran ( P ` B ) = (/) ) |
13 |
12
|
ineq2d |
|- ( -. B e. _V -> ( dom F i^i ran ( P ` B ) ) = ( dom F i^i (/) ) ) |
14 |
|
in0 |
|- ( dom F i^i (/) ) = (/) |
15 |
13 14
|
eqtrdi |
|- ( -. B e. _V -> ( dom F i^i ran ( P ` B ) ) = (/) ) |
16 |
15
|
coemptyd |
|- ( -. B e. _V -> ( F o. ( P ` B ) ) = (/) ) |
17 |
16
|
necon1ai |
|- ( ( F o. ( P ` B ) ) =/= (/) -> B e. _V ) |
18 |
7 8 17
|
3syl |
|- ( ph -> B e. _V ) |