Metamath Proof Explorer


Theorem clsneibex

Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, H , then the base set exists. (Contributed by RP, 4-Jun-2021)

Ref Expression
Hypotheses clsneibex.d
|- D = ( P ` B )
clsneibex.h
|- H = ( F o. D )
clsneibex.r
|- ( ph -> K H N )
Assertion clsneibex
|- ( ph -> B e. _V )

Proof

Step Hyp Ref Expression
1 clsneibex.d
 |-  D = ( P ` B )
2 clsneibex.h
 |-  H = ( F o. D )
3 clsneibex.r
 |-  ( ph -> K H N )
4 1 coeq2i
 |-  ( F o. D ) = ( F o. ( P ` B ) )
5 2 4 eqtri
 |-  H = ( F o. ( P ` B ) )
6 5 a1i
 |-  ( ph -> H = ( F o. ( P ` B ) ) )
7 6 3 breqdi
 |-  ( ph -> K ( F o. ( P ` B ) ) N )
8 brne0
 |-  ( K ( F o. ( P ` B ) ) N -> ( F o. ( P ` B ) ) =/= (/) )
9 fvprc
 |-  ( -. B e. _V -> ( P ` B ) = (/) )
10 9 rneqd
 |-  ( -. B e. _V -> ran ( P ` B ) = ran (/) )
11 rn0
 |-  ran (/) = (/)
12 10 11 eqtrdi
 |-  ( -. B e. _V -> ran ( P ` B ) = (/) )
13 12 ineq2d
 |-  ( -. B e. _V -> ( dom F i^i ran ( P ` B ) ) = ( dom F i^i (/) ) )
14 in0
 |-  ( dom F i^i (/) ) = (/)
15 13 14 eqtrdi
 |-  ( -. B e. _V -> ( dom F i^i ran ( P ` B ) ) = (/) )
16 15 coemptyd
 |-  ( -. B e. _V -> ( F o. ( P ` B ) ) = (/) )
17 16 necon1ai
 |-  ( ( F o. ( P ` B ) ) =/= (/) -> B e. _V )
18 7 8 17 3syl
 |-  ( ph -> B e. _V )