| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsneibex.d | ⊢ 𝐷  =  ( 𝑃 ‘ 𝐵 ) | 
						
							| 2 |  | clsneibex.h | ⊢ 𝐻  =  ( 𝐹  ∘  𝐷 ) | 
						
							| 3 |  | clsneibex.r | ⊢ ( 𝜑  →  𝐾 𝐻 𝑁 ) | 
						
							| 4 | 1 | coeq2i | ⊢ ( 𝐹  ∘  𝐷 )  =  ( 𝐹  ∘  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 5 | 2 4 | eqtri | ⊢ 𝐻  =  ( 𝐹  ∘  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  𝐻  =  ( 𝐹  ∘  ( 𝑃 ‘ 𝐵 ) ) ) | 
						
							| 7 | 6 3 | breqdi | ⊢ ( 𝜑  →  𝐾 ( 𝐹  ∘  ( 𝑃 ‘ 𝐵 ) ) 𝑁 ) | 
						
							| 8 |  | brne0 | ⊢ ( 𝐾 ( 𝐹  ∘  ( 𝑃 ‘ 𝐵 ) ) 𝑁  →  ( 𝐹  ∘  ( 𝑃 ‘ 𝐵 ) )  ≠  ∅ ) | 
						
							| 9 |  | fvprc | ⊢ ( ¬  𝐵  ∈  V  →  ( 𝑃 ‘ 𝐵 )  =  ∅ ) | 
						
							| 10 | 9 | rneqd | ⊢ ( ¬  𝐵  ∈  V  →  ran  ( 𝑃 ‘ 𝐵 )  =  ran  ∅ ) | 
						
							| 11 |  | rn0 | ⊢ ran  ∅  =  ∅ | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( ¬  𝐵  ∈  V  →  ran  ( 𝑃 ‘ 𝐵 )  =  ∅ ) | 
						
							| 13 | 12 | ineq2d | ⊢ ( ¬  𝐵  ∈  V  →  ( dom  𝐹  ∩  ran  ( 𝑃 ‘ 𝐵 ) )  =  ( dom  𝐹  ∩  ∅ ) ) | 
						
							| 14 |  | in0 | ⊢ ( dom  𝐹  ∩  ∅ )  =  ∅ | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( ¬  𝐵  ∈  V  →  ( dom  𝐹  ∩  ran  ( 𝑃 ‘ 𝐵 ) )  =  ∅ ) | 
						
							| 16 | 15 | coemptyd | ⊢ ( ¬  𝐵  ∈  V  →  ( 𝐹  ∘  ( 𝑃 ‘ 𝐵 ) )  =  ∅ ) | 
						
							| 17 | 16 | necon1ai | ⊢ ( ( 𝐹  ∘  ( 𝑃 ‘ 𝐵 ) )  ≠  ∅  →  𝐵  ∈  V ) | 
						
							| 18 | 7 8 17 | 3syl | ⊢ ( 𝜑  →  𝐵  ∈  V ) |