Step |
Hyp |
Ref |
Expression |
1 |
|
clsneibex.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
2 |
|
clsneibex.h |
⊢ 𝐻 = ( 𝐹 ∘ 𝐷 ) |
3 |
|
clsneibex.r |
⊢ ( 𝜑 → 𝐾 𝐻 𝑁 ) |
4 |
1
|
coeq2i |
⊢ ( 𝐹 ∘ 𝐷 ) = ( 𝐹 ∘ ( 𝑃 ‘ 𝐵 ) ) |
5 |
2 4
|
eqtri |
⊢ 𝐻 = ( 𝐹 ∘ ( 𝑃 ‘ 𝐵 ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝐹 ∘ ( 𝑃 ‘ 𝐵 ) ) ) |
7 |
6 3
|
breqdi |
⊢ ( 𝜑 → 𝐾 ( 𝐹 ∘ ( 𝑃 ‘ 𝐵 ) ) 𝑁 ) |
8 |
|
brne0 |
⊢ ( 𝐾 ( 𝐹 ∘ ( 𝑃 ‘ 𝐵 ) ) 𝑁 → ( 𝐹 ∘ ( 𝑃 ‘ 𝐵 ) ) ≠ ∅ ) |
9 |
|
fvprc |
⊢ ( ¬ 𝐵 ∈ V → ( 𝑃 ‘ 𝐵 ) = ∅ ) |
10 |
9
|
rneqd |
⊢ ( ¬ 𝐵 ∈ V → ran ( 𝑃 ‘ 𝐵 ) = ran ∅ ) |
11 |
|
rn0 |
⊢ ran ∅ = ∅ |
12 |
10 11
|
eqtrdi |
⊢ ( ¬ 𝐵 ∈ V → ran ( 𝑃 ‘ 𝐵 ) = ∅ ) |
13 |
12
|
ineq2d |
⊢ ( ¬ 𝐵 ∈ V → ( dom 𝐹 ∩ ran ( 𝑃 ‘ 𝐵 ) ) = ( dom 𝐹 ∩ ∅ ) ) |
14 |
|
in0 |
⊢ ( dom 𝐹 ∩ ∅ ) = ∅ |
15 |
13 14
|
eqtrdi |
⊢ ( ¬ 𝐵 ∈ V → ( dom 𝐹 ∩ ran ( 𝑃 ‘ 𝐵 ) ) = ∅ ) |
16 |
15
|
coemptyd |
⊢ ( ¬ 𝐵 ∈ V → ( 𝐹 ∘ ( 𝑃 ‘ 𝐵 ) ) = ∅ ) |
17 |
16
|
necon1ai |
⊢ ( ( 𝐹 ∘ ( 𝑃 ‘ 𝐵 ) ) ≠ ∅ → 𝐵 ∈ V ) |
18 |
7 8 17
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ V ) |