Metamath Proof Explorer


Theorem clsneibex

Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, H , then the base set exists. (Contributed by RP, 4-Jun-2021)

Ref Expression
Hypotheses clsneibex.d 𝐷 = ( 𝑃𝐵 )
clsneibex.h 𝐻 = ( 𝐹𝐷 )
clsneibex.r ( 𝜑𝐾 𝐻 𝑁 )
Assertion clsneibex ( 𝜑𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 clsneibex.d 𝐷 = ( 𝑃𝐵 )
2 clsneibex.h 𝐻 = ( 𝐹𝐷 )
3 clsneibex.r ( 𝜑𝐾 𝐻 𝑁 )
4 1 coeq2i ( 𝐹𝐷 ) = ( 𝐹 ∘ ( 𝑃𝐵 ) )
5 2 4 eqtri 𝐻 = ( 𝐹 ∘ ( 𝑃𝐵 ) )
6 5 a1i ( 𝜑𝐻 = ( 𝐹 ∘ ( 𝑃𝐵 ) ) )
7 6 3 breqdi ( 𝜑𝐾 ( 𝐹 ∘ ( 𝑃𝐵 ) ) 𝑁 )
8 brne0 ( 𝐾 ( 𝐹 ∘ ( 𝑃𝐵 ) ) 𝑁 → ( 𝐹 ∘ ( 𝑃𝐵 ) ) ≠ ∅ )
9 fvprc ( ¬ 𝐵 ∈ V → ( 𝑃𝐵 ) = ∅ )
10 9 rneqd ( ¬ 𝐵 ∈ V → ran ( 𝑃𝐵 ) = ran ∅ )
11 rn0 ran ∅ = ∅
12 10 11 eqtrdi ( ¬ 𝐵 ∈ V → ran ( 𝑃𝐵 ) = ∅ )
13 12 ineq2d ( ¬ 𝐵 ∈ V → ( dom 𝐹 ∩ ran ( 𝑃𝐵 ) ) = ( dom 𝐹 ∩ ∅ ) )
14 in0 ( dom 𝐹 ∩ ∅ ) = ∅
15 13 14 eqtrdi ( ¬ 𝐵 ∈ V → ( dom 𝐹 ∩ ran ( 𝑃𝐵 ) ) = ∅ )
16 15 coemptyd ( ¬ 𝐵 ∈ V → ( 𝐹 ∘ ( 𝑃𝐵 ) ) = ∅ )
17 16 necon1ai ( ( 𝐹 ∘ ( 𝑃𝐵 ) ) ≠ ∅ → 𝐵 ∈ V )
18 7 8 17 3syl ( 𝜑𝐵 ∈ V )