Metamath Proof Explorer


Theorem clsneircomplex

Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses clsneibex.d 𝐷 = ( 𝑃𝐵 )
clsneibex.h 𝐻 = ( 𝐹𝐷 )
clsneibex.r ( 𝜑𝐾 𝐻 𝑁 )
Assertion clsneircomplex ( 𝜑 → ( 𝐵𝑆 ) ∈ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 clsneibex.d 𝐷 = ( 𝑃𝐵 )
2 clsneibex.h 𝐻 = ( 𝐹𝐷 )
3 clsneibex.r ( 𝜑𝐾 𝐻 𝑁 )
4 1 2 3 clsneibex ( 𝜑𝐵 ∈ V )
5 difssd ( 𝜑 → ( 𝐵𝑆 ) ⊆ 𝐵 )
6 4 5 sselpwd ( 𝜑 → ( 𝐵𝑆 ) ∈ 𝒫 𝐵 )