Metamath Proof Explorer
Description: The relative complement of the class S exists as a subset of the
base set. (Contributed by RP, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
clsneibex.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
|
|
clsneibex.h |
⊢ 𝐻 = ( 𝐹 ∘ 𝐷 ) |
|
|
clsneibex.r |
⊢ ( 𝜑 → 𝐾 𝐻 𝑁 ) |
|
Assertion |
clsneircomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ∈ 𝒫 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
clsneibex.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
2 |
|
clsneibex.h |
⊢ 𝐻 = ( 𝐹 ∘ 𝐷 ) |
3 |
|
clsneibex.r |
⊢ ( 𝜑 → 𝐾 𝐻 𝑁 ) |
4 |
1 2 3
|
clsneibex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
5 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ⊆ 𝐵 ) |
6 |
4 5
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ∈ 𝒫 𝐵 ) |