| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | clsnei.p | ⊢ 𝑃  =  ( 𝑛  ∈  V  ↦  ( 𝑝  ∈  ( 𝒫  𝑛  ↑m  𝒫  𝑛 )  ↦  ( 𝑜  ∈  𝒫  𝑛  ↦  ( 𝑛  ∖  ( 𝑝 ‘ ( 𝑛  ∖  𝑜 ) ) ) ) ) ) | 
						
							| 3 |  | clsnei.d | ⊢ 𝐷  =  ( 𝑃 ‘ 𝐵 ) | 
						
							| 4 |  | clsnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 5 |  | clsnei.h | ⊢ 𝐻  =  ( 𝐹  ∘  𝐷 ) | 
						
							| 6 |  | clsnei.r | ⊢ ( 𝜑  →  𝐾 𝐻 𝑁 ) | 
						
							| 7 | 3 5 6 | clsneibex | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 8 |  | pwexg | ⊢ ( 𝐵  ∈  V  →  𝒫  𝐵  ∈  V ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝒫  𝐵  ∈  V ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝐵  ∈  V ) | 
						
							| 11 |  | eqid | ⊢ ( 𝒫  𝐵 𝑂 𝐵 )  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 12 | 1 9 10 11 | fsovf1od | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  ( 𝒫  𝐵 𝑂 𝐵 ) : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑃 ‘ 𝐵 )  =  ( 𝑃 ‘ 𝐵 ) | 
						
							| 14 | 2 13 10 | dssmapf1od | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  ( 𝑃 ‘ 𝐵 ) : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 15 |  | f1oco | ⊢ ( ( ( 𝒫  𝐵 𝑂 𝐵 ) : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 )  ∧  ( 𝑃 ‘ 𝐵 ) : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  ( ( 𝒫  𝐵 𝑂 𝐵 )  ∘  ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  ( ( 𝒫  𝐵 𝑂 𝐵 )  ∘  ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 17 | 7 16 | mpdan | ⊢ ( 𝜑  →  ( ( 𝒫  𝐵 𝑂 𝐵 )  ∘  ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 18 | 4 3 | coeq12i | ⊢ ( 𝐹  ∘  𝐷 )  =  ( ( 𝒫  𝐵 𝑂 𝐵 )  ∘  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 19 | 5 18 | eqtri | ⊢ 𝐻  =  ( ( 𝒫  𝐵 𝑂 𝐵 )  ∘  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 20 |  | f1oeq1 | ⊢ ( 𝐻  =  ( ( 𝒫  𝐵 𝑂 𝐵 )  ∘  ( 𝑃 ‘ 𝐵 ) )  →  ( 𝐻 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 )  ↔  ( ( 𝒫  𝐵 𝑂 𝐵 )  ∘  ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( 𝐻 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 )  ↔  ( ( 𝒫  𝐵 𝑂 𝐵 )  ∘  ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 22 | 17 21 | sylibr | ⊢ ( 𝜑  →  𝐻 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) |