| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clsnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
| 2 |
|
clsnei.p |
⊢ 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛 ↑m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛 ∖ 𝑜 ) ) ) ) ) ) |
| 3 |
|
clsnei.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
| 4 |
|
clsnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 5 |
|
clsnei.h |
⊢ 𝐻 = ( 𝐹 ∘ 𝐷 ) |
| 6 |
|
clsnei.r |
⊢ ( 𝜑 → 𝐾 𝐻 𝑁 ) |
| 7 |
3 5 6
|
clsneibex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 8 |
|
pwexg |
⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ∈ V ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝒫 𝐵 ∈ V ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐵 ∈ V ) |
| 11 |
|
eqid |
⊢ ( 𝒫 𝐵 𝑂 𝐵 ) = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 12 |
1 9 10 11
|
fsovf1od |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ( 𝒫 𝐵 𝑂 𝐵 ) : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
| 13 |
|
eqid |
⊢ ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ 𝐵 ) |
| 14 |
2 13 10
|
dssmapf1od |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ( 𝑃 ‘ 𝐵 ) : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 15 |
|
f1oco |
⊢ ( ( ( 𝒫 𝐵 𝑂 𝐵 ) : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ∧ ( 𝑃 ‘ 𝐵 ) : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( ( 𝒫 𝐵 𝑂 𝐵 ) ∘ ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
| 16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ( ( 𝒫 𝐵 𝑂 𝐵 ) ∘ ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
| 17 |
7 16
|
mpdan |
⊢ ( 𝜑 → ( ( 𝒫 𝐵 𝑂 𝐵 ) ∘ ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
| 18 |
4 3
|
coeq12i |
⊢ ( 𝐹 ∘ 𝐷 ) = ( ( 𝒫 𝐵 𝑂 𝐵 ) ∘ ( 𝑃 ‘ 𝐵 ) ) |
| 19 |
5 18
|
eqtri |
⊢ 𝐻 = ( ( 𝒫 𝐵 𝑂 𝐵 ) ∘ ( 𝑃 ‘ 𝐵 ) ) |
| 20 |
|
f1oeq1 |
⊢ ( 𝐻 = ( ( 𝒫 𝐵 𝑂 𝐵 ) ∘ ( 𝑃 ‘ 𝐵 ) ) → ( 𝐻 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ↔ ( ( 𝒫 𝐵 𝑂 𝐵 ) ∘ ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ( 𝐻 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ↔ ( ( 𝒫 𝐵 𝑂 𝐵 ) ∘ ( 𝑃 ‘ 𝐵 ) ) : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
| 22 |
17 21
|
sylibr |
⊢ ( 𝜑 → 𝐻 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |