Metamath Proof Explorer


Theorem clsneif1o

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021)

Ref Expression
Hypotheses clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
clsnei.d D = P B
clsnei.f F = 𝒫 B O B
clsnei.h H = F D
clsnei.r φ K H N
Assertion clsneif1o φ H : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B

Proof

Step Hyp Ref Expression
1 clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 clsnei.d D = P B
4 clsnei.f F = 𝒫 B O B
5 clsnei.h H = F D
6 clsnei.r φ K H N
7 3 5 6 clsneibex φ B V
8 pwexg B V 𝒫 B V
9 8 adantl φ B V 𝒫 B V
10 simpr φ B V B V
11 eqid 𝒫 B O B = 𝒫 B O B
12 1 9 10 11 fsovf1od φ B V 𝒫 B O B : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
13 eqid P B = P B
14 2 13 10 dssmapf1od φ B V P B : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
15 f1oco 𝒫 B O B : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B P B : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B 𝒫 B O B P B : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
16 12 14 15 syl2anc φ B V 𝒫 B O B P B : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
17 7 16 mpdan φ 𝒫 B O B P B : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
18 4 3 coeq12i F D = 𝒫 B O B P B
19 5 18 eqtri H = 𝒫 B O B P B
20 f1oeq1 H = 𝒫 B O B P B H : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B 𝒫 B O B P B : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
21 19 20 ax-mp H : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B 𝒫 B O B P B : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
22 17 21 sylibr φ H : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B