Metamath Proof Explorer


Theorem dssmapf1od

Description: For any base set B the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
dssmapfvd.d D = O B
dssmapfvd.b φ B V
Assertion dssmapf1od φ D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
2 dssmapfvd.d D = O B
3 dssmapfvd.b φ B V
4 1 2 3 dssmapfvd φ D = f 𝒫 B 𝒫 B s 𝒫 B B f B s
5 3 pwexd φ 𝒫 B V
6 5 mptexd φ s 𝒫 B B f B s V
7 6 ralrimivw φ f 𝒫 B 𝒫 B s 𝒫 B B f B s V
8 nfcv _ f 𝒫 B 𝒫 B
9 8 fnmptf f 𝒫 B 𝒫 B s 𝒫 B B f B s V f 𝒫 B 𝒫 B s 𝒫 B B f B s Fn 𝒫 B 𝒫 B
10 7 9 syl φ f 𝒫 B 𝒫 B s 𝒫 B B f B s Fn 𝒫 B 𝒫 B
11 fneq1 D = f 𝒫 B 𝒫 B s 𝒫 B B f B s D Fn 𝒫 B 𝒫 B f 𝒫 B 𝒫 B s 𝒫 B B f B s Fn 𝒫 B 𝒫 B
12 11 biimprd D = f 𝒫 B 𝒫 B s 𝒫 B B f B s f 𝒫 B 𝒫 B s 𝒫 B B f B s Fn 𝒫 B 𝒫 B D Fn 𝒫 B 𝒫 B
13 4 10 12 sylc φ D Fn 𝒫 B 𝒫 B
14 1 2 3 dssmapnvod φ D -1 = D
15 nvof1o D Fn 𝒫 B 𝒫 B D -1 = D D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
16 13 14 15 syl2anc φ D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B