Metamath Proof Explorer


Theorem dssmapfvd

Description: Value of the duality operator for self-mappings of subsets of a base set, B . (Contributed by RP, 19-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
dssmapfvd.d D = O B
dssmapfvd.b φ B V
Assertion dssmapfvd φ D = f 𝒫 B 𝒫 B s 𝒫 B B f B s

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
2 dssmapfvd.d D = O B
3 dssmapfvd.b φ B V
4 pweq b = B 𝒫 b = 𝒫 B
5 4 4 oveq12d b = B 𝒫 b 𝒫 b = 𝒫 B 𝒫 B
6 id b = B b = B
7 difeq1 b = B b s = B s
8 7 fveq2d b = B f b s = f B s
9 6 8 difeq12d b = B b f b s = B f B s
10 4 9 mpteq12dv b = B s 𝒫 b b f b s = s 𝒫 B B f B s
11 5 10 mpteq12dv b = B f 𝒫 b 𝒫 b s 𝒫 b b f b s = f 𝒫 B 𝒫 B s 𝒫 B B f B s
12 3 elexd φ B V
13 ovex 𝒫 B 𝒫 B V
14 mptexg 𝒫 B 𝒫 B V f 𝒫 B 𝒫 B s 𝒫 B B f B s V
15 13 14 mp1i φ f 𝒫 B 𝒫 B s 𝒫 B B f B s V
16 1 11 12 15 fvmptd3 φ O B = f 𝒫 B 𝒫 B s 𝒫 B B f B s
17 2 16 syl5eq φ D = f 𝒫 B 𝒫 B s 𝒫 B B f B s