Metamath Proof Explorer


Theorem dssmapfv2d

Description: Value of the duality operator for self-mappings of subsets of a base set, B when applied to function F . (Contributed by RP, 19-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
dssmapfvd.d D = O B
dssmapfvd.b φ B V
dssmapfv2d.f φ F 𝒫 B 𝒫 B
dssmapfv2d.g G = D F
Assertion dssmapfv2d φ G = s 𝒫 B B F B s

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
2 dssmapfvd.d D = O B
3 dssmapfvd.b φ B V
4 dssmapfv2d.f φ F 𝒫 B 𝒫 B
5 dssmapfv2d.g G = D F
6 1 2 3 dssmapfvd φ D = f 𝒫 B 𝒫 B s 𝒫 B B f B s
7 fveq1 f = F f B s = F B s
8 7 difeq2d f = F B f B s = B F B s
9 8 mpteq2dv f = F s 𝒫 B B f B s = s 𝒫 B B F B s
10 9 adantl φ f = F s 𝒫 B B f B s = s 𝒫 B B F B s
11 pwexg B V 𝒫 B V
12 mptexg 𝒫 B V s 𝒫 B B F B s V
13 3 11 12 3syl φ s 𝒫 B B F B s V
14 6 10 4 13 fvmptd φ D F = s 𝒫 B B F B s
15 5 14 syl5eq φ G = s 𝒫 B B F B s