Step |
Hyp |
Ref |
Expression |
1 |
|
dssmapfvd.o |
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) |
2 |
|
dssmapfvd.d |
|- D = ( O ` B ) |
3 |
|
dssmapfvd.b |
|- ( ph -> B e. V ) |
4 |
|
dssmapfv2d.f |
|- ( ph -> F e. ( ~P B ^m ~P B ) ) |
5 |
|
dssmapfv2d.g |
|- G = ( D ` F ) |
6 |
1 2 3
|
dssmapfvd |
|- ( ph -> D = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |
7 |
|
fveq1 |
|- ( f = F -> ( f ` ( B \ s ) ) = ( F ` ( B \ s ) ) ) |
8 |
7
|
difeq2d |
|- ( f = F -> ( B \ ( f ` ( B \ s ) ) ) = ( B \ ( F ` ( B \ s ) ) ) ) |
9 |
8
|
mpteq2dv |
|- ( f = F -> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) ) |
10 |
9
|
adantl |
|- ( ( ph /\ f = F ) -> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) ) |
11 |
|
pwexg |
|- ( B e. V -> ~P B e. _V ) |
12 |
|
mptexg |
|- ( ~P B e. _V -> ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) e. _V ) |
13 |
3 11 12
|
3syl |
|- ( ph -> ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) e. _V ) |
14 |
6 10 4 13
|
fvmptd |
|- ( ph -> ( D ` F ) = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) ) |
15 |
5 14
|
syl5eq |
|- ( ph -> G = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) ) |