Metamath Proof Explorer


Theorem dssmapfv2d

Description: Value of the duality operator for self-mappings of subsets of a base set, B when applied to function F . (Contributed by RP, 19-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) )
dssmapfvd.d
|- D = ( O ` B )
dssmapfvd.b
|- ( ph -> B e. V )
dssmapfv2d.f
|- ( ph -> F e. ( ~P B ^m ~P B ) )
dssmapfv2d.g
|- G = ( D ` F )
Assertion dssmapfv2d
|- ( ph -> G = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dssmapfvd.o
 |-  O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) )
2 dssmapfvd.d
 |-  D = ( O ` B )
3 dssmapfvd.b
 |-  ( ph -> B e. V )
4 dssmapfv2d.f
 |-  ( ph -> F e. ( ~P B ^m ~P B ) )
5 dssmapfv2d.g
 |-  G = ( D ` F )
6 1 2 3 dssmapfvd
 |-  ( ph -> D = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) )
7 fveq1
 |-  ( f = F -> ( f ` ( B \ s ) ) = ( F ` ( B \ s ) ) )
8 7 difeq2d
 |-  ( f = F -> ( B \ ( f ` ( B \ s ) ) ) = ( B \ ( F ` ( B \ s ) ) ) )
9 8 mpteq2dv
 |-  ( f = F -> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) )
10 9 adantl
 |-  ( ( ph /\ f = F ) -> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) )
11 pwexg
 |-  ( B e. V -> ~P B e. _V )
12 mptexg
 |-  ( ~P B e. _V -> ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) e. _V )
13 3 11 12 3syl
 |-  ( ph -> ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) e. _V )
14 6 10 4 13 fvmptd
 |-  ( ph -> ( D ` F ) = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) )
15 5 14 syl5eq
 |-  ( ph -> G = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) )